Paper Name: Operating Systems Paper Code: PCCCS503

Paper Name with code: Operating Systems (PCCCSS503)

Institute of Engineering & Management, Kolkata
University of Engineering & Management, Kolkata
University of Engineering & Management, Jaipur

1|Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Paper name: Operating System
Code: PCCCS503

Semester: 5

Contacts: 3L

Credits: 3

Detailed Syllabus
Pre-requisite: Basic knowledge of Data Structures and Computer Organization.

Module 1: Introduction (10L)

Generations & Concept of Operating Systems, Types of Operating Systems, OS Services,
System Calls, Structure of an OS - Layered, Monolithic, Microkernel Operating Systems,
Concept of Virtual Machine. Case study on UNIX and WINDOWS Operating System.
Processes: Definition, Process Relationship, Different states of a Process, Process State
Transitions, Process Control Block (PCB), Context switching.

Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of
multithreads.

Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling
criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time;
Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR, Priority.

Multiprocessor scheduling.

Module 2: Inter-Process Communication (10L)

Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation,
Peterson’s Solution, The Producer Consumer Problem, Semaphores, Event Counters,
Monitors, Message Passing, Classical IPC Problems: Reader’s & Writer

Problem, Producer Consumer Problem, Dinning Philosopher Problem.

Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock
Prevention, Deadlock Avoidance: Banker’s algorithm, Deadlock detection and Recovery.

2|Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Module 3: Memory Management (10L)

Basic concept, Logical and Physical address map, Memory allocation:

Contiguous Memory allocation— Fixed and variable partition— Internal and External
fragmentation and Compaction; Paging: Principle of operation —Page allocation Disadvantages
of paging.

Virtual Memory: Basics of Virtual Memory —Locality of reference, Page fault, Working Set,
Dirty page/Dirty bit — Demand paging, Page Replacement algorithms: Optimal, First in First
Out (FIFO), Second Chance (SC), Not Recently used (NRU) and Least Recently used (LRU).

Module 4: 1I/0 Hardware, File and Disk Management (10L)

I/0 Hardware: 1/0O devices, Device controllers, Direct memory access Principles of 1/O
Software: Goals of Interrupt handlers, Device drivers, Device independent 1/O software

File Management: Concept of File, Access methods, File types, File operation, Directory
structure, File System structure, Allocation methods (contiguous, linked, indexed), Free space
management (bit vector, linked list, grouping), directory implementation (linear list, hash
table), efficiency and performance.

Disk Management: Disk structure, Disk scheduling: FCFS, SSTF, SCAN, C SCAN, Disk
reliability, Disk formatting, Boot-block, Bad blocks

COURSE OUTCOMES:

CO 1: Students will be able to understand the different services provided by Operating System
and different scheduling algorithms at different level.

CO 2: Students will be able to learn synchronization techniques to avoid

deadlock.

CO 3: Students will acquire a knowledge about different memory management techniques like
paging, segmentation and demand paging etc.

CO 4: students will have a comprehensive understanding of I/O hardware and software principles,
secondary-storage structures, file management, and disk management.

TEXT BOOK:

1. Operating System Concepts Essentials, 9th Edition by Abraham Silberschatz, Peter Galvin,
Greg Gagne, Wiley Asia Student Edition.

3|Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

2. Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice
Hall of India.

REFERENCE BOOKS:

1. Operating System Concepts, Ekta Walia, Khanna Publishing House (AICTE Recommended
Textbook — 2018).

2. Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, Irwin
Publishing.

ONLINE RESOURCES:

https://online.stanford.edu/courses/cs111-operating-systems-principles)
https://onlinecourses.nptel.ac.in/noc20_cs04/preview
https://www.coursera.org/specializations/codio-introduction-operating-systems
https://www.coursera.org/learn/akamai-operating-systems#modules

bl o e

4|Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

MODULE 1

Definition of Operating System: An operating system is system software that manages
computer hardware and software resources and provides common services for computer
programs.

Types of Operating Systems:

1. Batch Operating System —

This type of operating system do not interact with the computer directly. There is an operator
which takes similar jobs having same requirement and group them into batches. It is the
responsibility of operator to sort the jobs with similar needs.

2. Time-Sharing Operating Systems —

Each task has given some time to execute, so that all the tasks work smoothly. Each user gets
time of CPU as they use single system. These systems are also known as Multitasking Systems.
The task can be from single user or from different users also. The time that each task gets to
execute is called quantum. After this time interval is over OS switches over to next task.

3. Distributed Operating System —

These types of operating system is a recent advancement in the world of computer technology
and are being widely accepted all-over the world and, that too, with a great pace. Various
autonomous interconnected computers communicate each other using a shared communication
network. Independent systems possess their own memory unit and CPU. These are referred as
loosely coupled systems or distributed systems. These systems processors differ in sizes and
functions. The major benefit of working with these types of operating system is that it is always
possible that one user can access the files or software which are not actually present on his
system but on some other system connected within this network i.e., remote access is enabled
within the devices connected in that network.

4. Network Operating System —

These systems runs on a server and provides the capability to manage data, users, groups,
security, applications, and other networking functions. These type of operating systems allows
shared access of files, printers, security, applications, and other networking functions over a

5|Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

small private network. One more important aspect of Network Operating Systems is that all the
users are well aware of the underlying configuration, of all other users within the network, their
individual connections etc. and that’s why these computers are popularly known as tightly
coupled systems.

5. Real-Time Operating System —
These types of OSs serves the real-time systems. The time interval required to process and
respond to inputs is very small. This time interval is called response time.

Real-time systems are used when there are time requirements are very strict like missile
systems, air traffic control systems, robots etc.

Two types of Real-Time Operating System which are as follows:

e Hard Real-Time Systems:
These OSs are meant for the applications where time constraints are very strict and
even the shortest possible delay is not acceptable. These systems are built for saving
life like automatic parachutes or air bags which are required to be readily available in

case of any accident. Virtual memory is almost never found in these systems.

e Soft Real-Time Systems:

o These OSs are for applications where for time-constraint is less strict.

Operating Systems Components:

6|Page Study Material

Paper Name: Operating Systems

Paper Code: PCCCS503

7|Page

User Interface (Ul)

A

A4 A 4

Application Program Interface (API)

A

A

OS Kernel & Kernel Utilities

A

A

Hardware Device Drivers

A

A

Hardware Devices

® WS ~-0O®

Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Definition of Process:

® In computing, a process is the instance of a computer program that is being executed.

® A process is defined as an entity which represents the basic unit of work to be
implemented in the system.

Component of a Process

Stack

—

Heap

Data

Text

Stack
The process Stack contains the temporary data such as method/function parameters, return
address and local variables.

Heap
This is dynamically allocated memory to a process during its run time.

Text
This includes the current activity represented by the value of Program Counter and the
contents of the processor's registers.

Data
This section contains the global and static variables.

8|Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Process Life Cycle

admitted interrupt exit
running

scheduler dispatch

I/0 or event completion I/0 or event wait

Start
This is the initial state when a process is first started/created.

Ready

The process is waiting to be assigned to a processor. Ready processes are waiting to have the
processor allocated to them by the operating system so that they can run. Process may come
into this state after Start state or while running it by but interrupted by the scheduler to assign
CPU to some other process.

Running
Once the process has been assigned to a processor by the OS scheduler, the process state is
set to running and the processor executes its instructions.

Waiting
Process moves into the waiting state if it needs to wait for a resource, such as waiting for user
input, or waiting for a file to become available.

Terminated or Exit

Once the process finishes its execution, or it is terminated by the operating system, it is
moved to the terminated state where it waits to be removed from main memory.

9|Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Process Control Block (PCB)

A Process Control Block is a data structure maintained by the Operating System for every
process. The PCB is identified by an integer process ID (PID). A PCB keeps all the information
needed to keep track of a process as listed below in the table —

Process ID

State

Pointer

Priority
Program counter

CPU registers

1/0 information

Accounting information

etc....

Process Scheduling:

The process scheduling is the activity of the process manager that handles the removal of the
running process from the CPU and the selection of another process on the basis of a particular
strategy.

Scheduling Queues

Job Queue- This queue keeps all the processes in the system.

Ready Queue- This queue keeps a set of all processes residing in main memory, ready and
waiting to execute. A new process is always put in this queue.

Device Queue- The processes which are blocked due to unavailability of an I/O device
constitute this queue.

Schedulers

10| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Schedulers are special system software which handle process scheduling in various ways. Their
main task is to select the jobs to be submitted into the system and to decide which process to
run.

Schedulers are of three types —

Long-Term Scheduler- It is also called a job scheduler. A long-term scheduler determines
which programs are admitted to the system for processing. It selects processes from the queue
and loads them into memory for execution.

Medium-Term Scheduler- Medium-term scheduling is a part of swapping. It removes the
processes from the memory. It reduces the degree of multiprogramming. The medium-term

scheduler is in-charge of handling the swapped out-processes.

Short-Term Scheduler- It is also called as CPU scheduler. CPU scheduler selects a process
among the processes that are ready to execute and allocates CPU to one of them.

Context Switching
A context switch is the mechanism to store and restore the state or context of a process in

Process Control block so that a process execution can be resumed from the same point at a later
time.

First Come First Serve Scheduling

In this, the process that comes first will be executed first and next process starts only after
the previous gets fully executed.

Process | Arrival Time | Execute Time | Service Time

PO o 5 o
PL 1 3 5
n2 2 8 -
P3 3 6 16

PO P1 P2 P3

11 |Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Waiting time for each process:

Process Wait Time : Service Time - Arrival Time
PO 0-0=0

P1 5-1=4

P2 8-2=6

P3 16-3=13

Turn around time for each process:

Process Turn around Time
PO 5-0=5
P1 8 —1=7
P2 16 —2=14
P3 22 -3=19
Round Robin Scheduling

Round Robin is the preemptive process scheduling algorithm.
Each process is provided a fix time to execute, it is called a quantum.

Once a process is executed for a given time period, it is preempted and other process
executes for a given time period.

Context switching is used to save states of preempted processes.

Process | Arrival Time| Execute Time | Priority Service Time

PO
Pl
P2
P3

9
6

14
0

WN O
o w W
W N e

12| P Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Quantum =3

PO P1 P2 P3 |PO| P2 P3 | P2

0 3 6 9 12 14 17 20 22

Process Wait Time : Service Time - Arrival Time

PO (0-0)+(12-3)=9

Pl (3-1)=2

P2 (6-2)+(14-9)+(20-17)= 12
P3 (9-3)+(17-12)=11

Shortest Job First Scheduling: Shortest job first (SJF) or shortest job next, is a scheduling
policy that selects the waiting process with the smallest execution time to execute next. SJF is a
non- preemptive algorithm.

Example
PID Arrival Time Burst Time

P1
P2

0 8

1 4
P3 2 9
P4 3 5
Gantt Chart

P1 P2 P4 P3

13| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

PID Waiting Time

P1 0-0 =0
P2 8-1=7
P3 17 - 2=15
P4 12 -3=9

Turnaround Time

8-0 =8

12 -1=11

26-2=24
17-3=14

Avg. Waiting Time= (0+7+15+9)/4= 7.75ms

Avg. Turnaround Time= (8+11+24+14)/4 = 14.25ms

Throughput= 4jobs/26ms= 0.15385jobs/ms

Shortest Remaining Time First Scheduling: This Algorithm is the preemptive version of SJF

scheduling. In SRTF, the execution of the process can be stopped after certain amount of time.
At the arrival of every process, the short term scheduler schedules the process with the least
remaining burst time among the list of available processes and the running process.

Example
PID Arrival Time

P1
P2

P3
P4

W N =D

14| Page

Burst Time

8
4
9
5

Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Gantt Chart
P1 P2 P4 P1 P3
0 1 5 10 17 26
PID Waiting Time Turnaround Time
P1 0+(10-1) =9 17-0 =17
P2 1-1=0 5-1=4
P3 17 - 2=15 26-2=24
P4 5-3=2 10-3=7

Avg. Waiting Time= (9+0+15+2)/4= 6.5ms
Avg. Turnaround Time= (17+4+24+7)/4 = 13ms

Longest Remaining Time First Scheduling:This is a pre-emptive version of Longest Job First
(LJF) scheduling algorithm. In this scheduling algorithm, we find the process with maximum
remaining time and then process it. We check for the maximum remaining time after some
interval of time to check if another process having more Burst Time arrived up to that time.

Priority Scheduling: Each process is assigned a priority. Process with the highest priority is
to be executed first and so on. Processes with the same priority are executed on first come first
served basis. Priority can be decided based on memory requirements, time requirements or any
other resource requirement.

Priority Scheduling can be preemptive and non- preemptive.

Non- preemptive Priority Scheduling:

Example

15|Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

PID Arrival Time Burst Time Priority

P1 0 11 2
P2 5 28 0
P3 12 2 3
P4 2 10 1
PS5 9 16 4
Gantt Chart
P1 P2 P4 P3 PS
0 11 39 49 51 67
PID Waiting Time Turnaround Time
P1 0-0=0 11-0 =11
P2 11-5 =6 39 -5=34
P3 49 - 12 =37 51-12=139
P4 39 -2=37 49 -2 =47
P5 51-9=42 67-9=158

Avg. Waiting Time= (0+6+37+37+42)/5= 24.4ms
Avg. Turnaround Time= (11+34+39+47+58)/5 = 37.8ms

Preemptive Priority Scheduling:

Example
PID Arrival Time Burst Time Priority

P1 0 11 2
16 |Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

P2 5 28 0
P3 12 2 3
P4 2 10 1
P5 9 16 4
Gantt Chart
P1 P4 P2 P4 P1 P3 P5
0o 2 5 33 40 49 51 67

Thread: A thread is a path of execution within a process. A process can contain multiple
threads.

A thread is also known as lightweight process. The idea is to achieve parallelism by dividing a
process into multiple threads. For example, in a browser, multiple tabs can be different threads.
MS Word uses multiple threads: one thread to format the text, another thread to process inputs,
etc.

Process vs Thread?

The primary difference is that threads within the same process run in a shared memory space,
while processes run in separate memory spaces.
Threads are not independent of one another like processes are, and as a result threads share
with other threads their code section, data section, and OS resources (like open files and
signals). But, like process, a thread has its own program counter (PC), register set, and stack
space.

Advantages of Thread over Process

1. Responsiveness: If the process is divided into multiple threads, if one thread completes its
execution, then its output can be immediately returned.

2. Faster context switch: Context switch time between threads is lower compared to process
context switch. Process context switching requires more overhead from the CPU.

17 |Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

3. Effective utilization of multiprocessor system: If we have multiple threads in a single
process, then we can schedule multiple threads on multiple processor. This will make process
execution faster.

4. Resource sharing: Resources like code, data, and files can be shared among all threads
within a process.
Note: stack and registers can’t be shared among the threads. Each thread has its own
stack and registers.

5. Communication: Communication between multiple threads is easier, as the threads shares
common address space. while in process we have to follow some specific communication
technique for communication between two process.

6. Enhanced throughput of the system: If a process is divided into multiple threads, and
each thread function is considered as one job, then the number of jobs completed per unit of
time is increased, thus increasing the throughput of the system.

Types of Threads: There are two types of threads.
User Level Thread
Kernel Level Thread

18| Page Study Material

Paper Name: Operating Systems

Paper Code: PCCCS503

Q.No.

Question

Blooms
Level

CO | Marks

There are three jobs running in a multi-programming environment with the
following requirements:

Jobl: Requires disk after every 2 min (device service time including wait and
access= 2 min). Total processing time= 6 min.

Job2: Requires printer after every 5 min (device service time including wait and
access= 2 min). Total processing time= 7 min.

Job3: Requires disk after every 3 min (device service time including wait and
access= 2min). Total processing time= 5 min.

Prepare a timing chart showing the CPU and I/O activities of the jobs. Compute
the total time for execution using mono-programming and multi-programming
and then compare the results.

4

1 10

What event handler would be executed in the following cases:

a. The running process has finished its execution before completion of its time
slice.

b. The running process tries to access memory location that is not allowed to
access.

c. If there is failure in reading or writing an I/O device.

d. A process is ready to execute but there is no space in the main memory.

e. A periodic process is idle waiting for its next time slot to be executed.

Processes go through the following states in their lifetime.

Process Life Cycle

advited ntarpl o

Schedulers: manage queues

Consider the following events and answer the questions that follow. Assume there
are 5 processes, all either in the read or running states initially. Assume the
processes are using a single processor.

* At time 5: P1 executes a command to read from disk 3.

* At time 15: P3’s time slice ends.

* At time 18: P4 executes a command to write to disk 3.

* At time 20: P2 executes a command to read from disk 2.

* At time 24: P3 executes a command to join with P5.

* At time 33: An interrupt occurs indicating that P2’s read is complete.

* At time 36: An interrupt occurs indicating that P1°s read is complete.

* At time 38: P5 terminates.

At time 48: An interrupt occurs indicating that P4’s write is complete.

For time 22, 37 and 47, identify which state each process is in. If it is waiting,
indicate what it is waiting for.

Consider the 3 processes, P1, P2 and P3 shown in the table.
Process Arrival time Time Units Required
P1 0 5

19| Page

Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

P2 1 7

P3 3 4

What will be the completion order of the 3 processes under the policies FCFS and
RR2 (round robin scheduling with CPU quantum of 2 time units)?

5 Three processes A, B and C each execute a loop of 100 iterations. In each | § 1 10
iteration of the loop, a process performs a single computation that requires tc CPU
milliseconds and then initiates a single I/O operation that lasts for tio
milliseconds. It is assumed that the computer where the processes execute has
sufficient number of I/O devices and the OS of the computer assigns different I/O
devices to each process. Also, the scheduling overhead of the OS is negligible.
The processes have the following characteristics:

Process id te tio
A 100ms 500 ms
B 350 ms 500 ms
C 200 ms 500 ms

The processes A, B, and C are started at times 0, 5 and 10 milliseconds
respectively, in a pure time sharing system (round robin scheduling) that uses a
time slice of 50 milliseconds. What is the time in milliseconds at which process C
would complete its first I/O operation?

6 Consider three CPU-intensive processes, which require 10, 20 and 30 time units | § 1 10
and arrive at times 0, 2 and 6, respectively. How many context switches are
needed if the operating system implements a shortest remaining time first
scheduling algorithm? Do not count the context switches at time zero and at the
end.

7 Consider three processes, all arriving at time zero, with total execution time of 10, | § 1 10
20 and 30 units, respectively. Each process spends the first 20% of execution time
doing I/O, the next 70% of time doing computation, and the last 10% of time
doing I/O again. The operating system uses a shortest remaining compute time
first scheduling algorithm and schedules a new process either when the running
process gets blocked on /O or when the running process finishes its compute
burst. Assume that all I/O operations can be overlapped as much as possible. For
what percentage of time does the CPU remain idle?

8 Consider the following table of arrival time and burst time for three processes PO, | 4 1 10
P1 and P2.
Process Arrival time Burst Time
PO 0 ms 9 ms
P1 1 ms 4 ms
P2 2 ms 9 ms

The pre-emptive shortest job first scheduling algorithm is used. Scheduling is
carried out only at arrival or completion of processes. What is the average waiting
time for the three processes?

9 Assume every process requires 3 seconds of service time in a system with single | 4 1 10
processor. If new processes are arriving at the rate of 10 processes per minute,
then estimate the fraction of time CPU is busy in system?

10 Under what circumstances does a multithreaded solution using multiple kernel | § 1 10
threads provide better performance than a single- threaded solution on a single-
processor system?
Describe the actions taken by a thread library to context switch between
user- level threads.

20| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

21| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

MODULE 2

On the basis of synchronization, processes are categorized as one of the following two types:

o Independent Process : Execution of one process does not affects the execution of other

processes.
e Cooperative Process: Execution of one process affects the execution of other
processes.
Process synchronization problem arises in the case of Cooperative process also because
resources are shared in Cooperative processes.

Critical Section Problem

Critical section is a code segment that can be accessed by only one process at a time. Critical
section contains shared variables which need to be synchronized to maintain consistency of
data variables.

do {

entry section

critical section

exit section

remainder section

} while (TRUE);

Any solution to the critical section problem must satisty three requirements:

e Mutual Exclusion : If a process is executing in its critical section, then no other process
is allowed to execute in the critical section.

e Progress : If no process is in the critical section, then no other process from outside can
block it from entering the critical section.

o Bounded Waiting : A bound must exist on the number of times that other processes are
allowed to enter their critical sections after a process has made a request to enter its
critical section and before that request is granted.

22| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Peterson’s Solution

Peterson’s Solution is a classical software based solution to the critical section problem.
In Peterson’s solution, we have two shared variables:

boolean flag[i] :Initialized to FALSE, initially no one is interested in entering the critical
section

int turn : The process whose turn is to enter the critical section.

do {
flag[i] = TRUE ;

turn=j;
while (flag[j] && turn==j);

critial section

flag[i] = FALSE ;

remainder section

} while (TRUE) ;

Semaphores

A Semaphore is an integer variable, which can be accessed only through two operations wait

() and signal 0.
There are two types of semaphores: Binary Semaphores and Counting Semaphores

Binary Semaphores: They can only be either 0 or 1. They are also known as mutex locks, as
the locks can provide mutual exclusion. All the processes can share the same mutex
semaphore that is initialized to 1. Then, a process has to wait until the lock becomes 0. Then,
the process can make the mutex semaphore 1 and start its critical section. When it completes
its critical section, it can reset the value of mutex semaphore to 0 and some other process can
enter its critical section.

Counting Semaphores: They can have any value and are not restricted over a certain domain.
They can be used to control access a resource that has a limitation on the number of
simultaneous accesses. The semaphore can be initialized to the number of instances of the
resource. Whenever a process wants to use that resource, it checks if the number of remaining

23| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

instances is more than zero, i.e., the process has an instance available. Then, the process can
enter its critical section thereby decreasing the value of the counting semaphore by 1. After
the process is over with the use of the instance of the resource, it can leave the critical section
thereby adding 1 to the number of available instances of the resource

24| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Reader Writer problem

Consider a situation where we have a file shared between many people.

o If one of the people tries editing the file, no other person should be reading or writing at
the same time, otherwise changes will not be visible to him/her.
o However if some person is reading the file, then others may read it at the same time.
Precisely in OS we call this situation as the readers-writers problem
Problem parameters:

e One set of data is shared among a number of processes
e Once a writer is ready, it performs its write. Only one writer may write at a time
o Ifaprocess is writing, no other process can read it
o Ifat least one reader is reading, no other process can write
o Readers may not write and only read

Deadlock

Deadlock is a situation where a set of processes are blocked because each process is
holding a resource and waiting for another resource acquired by some other process.
Consider an example when two trains are coming toward each other on same track and
there is only one track, none of the trains can move once they are in front of each other.
Similar situation occurs in operating systems when there are two or more processes
hold some resources and wait for resources held by other(s). For example, in the below
diagram, Process 1 is holding Resource 1 and waiting for resource 2 which is acquired
by process 2, and process 2 is waiting for resource 1.

Resource 1

Assigned
to

Deadlock can arise if following four conditions hold simultaneously (Necessary
Conditions)

Mutual Exclusion: One or more than one resource are non-sharable (Only one process
25| Page Study Material

Resource 2

Paper Name: Operating Systems Paper Code: PCCCS503

can use at a time)
Hold and Wait: A process is holding at least one resource and waiting for resources.
No Preemption: A resource cannot be taken from a process unless the process releases
the resource.
Circular Wait: A set of processes are waiting for each other in circular form.

Methods for handling deadlock

There are three ways to handle deadlock

1) Deadlock prevention or avoidance: The idea is to not let the system into deadlock
state.

2) Deadlock detection and recovery: Let deadlock occur, then do preemption to handle
it once occurred.

DEADLOCK PREVENTION:

Eliminate Mutual Exclusion
It is not possible to dis-satisfy the mutual exclusion because some resources, such as the tap
drive and printer, are inherently non-shareable.

Eliminate Hold and wait

1. Allocate all required resources to the process before start of its execution, this way hold
and wait condition is eliminated but it will lead to low device utilization. for example, if a
process requires printer at a later time and we have allocated printer before the start of its
execution printer will remained blocked till it has completed its execution.

2. Process will make new request for resources after releasing the current set of resources.
This solution may lead to starvation.

R1
P1is holdingR1 /
V4

¥

P1
\\fﬂ is waiting for R2
p

|R2
HOLD AND WAIT

26| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Eliminate No Preemption
Preempt resources from process when resources required by other high priority process.

Eliminate Circular Wait

Each resource will be assigned with a numerical number. A process can request for the
resources only in increasing order of numbering.

For Example, if P1 process is allocated RS resources, now next time if P1 ask for R4, R3
lesser than RS such request will not be granted, only request for resources more than R5 will
be granted.

Deadlock Avoidance
Deadlock avoidance can be done with Banker’s Algorithm.

Banker’s Algorithm

Bankers’s Algorithm is resource allocation and deadlock avoidance algorithm which test all
the request made by processes for resources, it check for safe state, if after granting request
system remains in the safe state it allows the request and if there is no safe state it don’t allow
the request made by the process.

Inputs to Banker’s Algorithm

1. Max need of resources by each process.

2. Currently allocated resources by each process.

3. Max free available resources in the system.

Request will only be granted under below condition.

1. If request made by process is less than equal to max need to that process.

2. If request made by process is less than equal to freely available resource in the system.

27| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Q.No. | Question Blooms | CO | Marks
Level
1 4 2 10
P10 P2()
{ {
C=B-1; D=2*B;
B=2*C; B-D-1;

} }

Here, B is a shared variable with initial value 2.
How many values B can have? And what are the values?

2 A shared variable x, initialized to zero, is operated on by four concurrent | § 2 10
processes W, X, Y, Z as follows. Each of the processes W and X reads x from
memory, increments by one, stores it to memory and then terminates. Each of the
processes Y and Z reads x from memory, decrements by two, stores it to memory,
and then terminates. Each process before reading x invokes the P operation (i.e.
wait) on a counting semaphore S and invokes the V operation (i.e. signal) on the
semaphore S after storing x to memory. Semaphore S is initialized to two. What is
the maximum possible value of x after all processes complete execution?

3 Does presence of cycle in a resource allocation graph necessarily creates | § 2 10
deadlock. Explain.

4 Prove that deadlock prevention mechanism actually to prevent deadlock. 5 2 10

5 Consider the following snapshot of a system. There are no outstanding unsatisfied | 4 2 10

requests for resources. Check whether the system is in deadlock.

Current allocation Maximum demand |Available
process R1 [R2 R3 R4 |R1 R2 R3 R4 [RlI [R2 [R3 [R4
P1 0 0 1 2 0 0 1 2 1 5 2 0
P2 2 0 0 0 2 7 5 0
P3 0 0 3 4 6 6 5 6
P4 2 3 5 4 4 3 5 6
P5 0 3 3 2 0 6 5 2
6 Consider method used by process P1 and P2 for accessing critical section. The | § 2 10
initial values of shared Boolean variables S1 and S2 are randomly selected.
P1() P2()
{ {
While (S1==82); While(S1!=S2);
critical section critical section
S1=S2; S1=not (S2);
Which of the following is true? Give explanation.
a. Mutual exclusion + Progress
b. Mutual exclusion only
c. Progress only
d. None

28| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

7 Consider method used by process P1 and P2 for accessing critical section.
P1() P2()
{ {
While (T) While(T)
var P=T ; var Q=T
while(var Q==T); while(var P==T);
critical section critical section
var P=F; var Q=F;
}
Which of the following is true? Give explanation.
a. No Mutual exclusion + No Deadlock
b. Mutual exclusion only
c. Deadlock only
d. Mutual exclusion + Deadlock

2 10

8 A counting semaphore S is initialized to 10. Then, 6 P(Wait) operations and 4
V(Signal) operations are performed on S. What is the final value of S? Show the
working.

9 “If there is a cycle in the resource allocation graph, it may or may not be in
deadlock state*. Comment on this statement with a suitable example.

29| Page

Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

MODULE 3

Memory Management

In a multiprogramming computer, the Operating System resides in a part of memory, and the
rest is used by multiple processes. The task of subdividing the memory among different
processes is called Memory Management. Memory management is a method in the operating
system to manage operations between main memory and disk during process execution. The
main aim of memory management is to achieve efficient utilization of memory.

Why Memory Management is Required?

Allocate and de-allocate memory before and after process execution.

To keep track of used memory space by processes.

To minimize fragmentation issues.

To proper utilization of main memory.

To maintain data integrity while executing of process.

Logical and Physical Address Space

Logical Address Space: An address generated by the CPU is known as a “Logical Address”.
It is also known as a Virtual address. Logical address space can be defined as the size of the
process. A logical address can be changed.

Physical Address Space: An address seen by the memory unit (i.e the one loaded into the
memory address register of the memory) is commonly known as a “Physical Address”. A
Physical address is also known as a Real address. The set of all physical addresses
corresponding to these logical addresses is known as Physical address space. A physical
address is computed by MMU. The run-time mapping from virtual to physical addresses is
done by a hardware device Memory Management Unit(MMU). The physical address always
remains constant.

Static and Dynamic Loading

Loading a process into the main memory is done by a loader. There are two different types of
loading :

Static Loading: Static Loading is basically loading the entire program into a fixed address. It
requires more memory space.

Dynamic Loading: The entire program and all data of a process must be in physical memory
for the process to execute. So, the size of a process is limited to the size of physical memory.
To gain proper memory utilization, dynamic loading is used. In dynamic loading, a routine is
not loaded until it is called. All routines are residing on disk in a relocatable load format. One
of the advantages of dynamic loading is that the unused routine is never loaded. This loading
is useful when a large amount of code is needed to handle it efficiently.

Static and Dynamic Linking

30| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

To perform a linking task a linker is used. A linker is a program that takes one or more object
files generated by a compiler and combines them into a single executable file.

Static Linking: In static linking, the linker combines all necessary program modules into a
single executable program. So there is no runtime dependency. Some operating systems
support only static linking, in which system language libraries are treated like any other
object module.

Dynamic Linking: The basic concept of dynamic linking is similar to dynamic loading. In
dynamic linking, “Stub” is included for each appropriate library routine reference. A stub is a
small piece of code. When the stub is executed, it checks whether the needed routine is
already in memory or not. If not available then the program loads the routine into memory.
Swapping

When a process is executed it must have resided in memory. Swapping is a process of
swapping a process temporarily into a secondary memory from the main memory, which is
fast compared to secondary memory. A swapping allows more processes to be run and can be
fit into memory at one time. The main part of swapping is transferred time and the total time
is directly proportional to the amount of memory swapped. Swapping is also known as roll-
out, or roll because if a higher priority process arrives and wants service, the memory
manager can swap out the lower priority process and then load and execute the higher priority
process. After finishing higher priority work, the lower priority process swapped back in
memory and continued to the execution process.

Operating
System

Swapped Out \ Process 1

User
Space

Swapped In (Process 2)

| Main Memory| [Secondary Memory

Contiguous Memory Allocation

The main memory should accommodate both the operating system and the different client
processes. Therefore, the allocation of memory becomes an important task in the operating
system. The memory is usually divided into two partitions: one for the resident operating
system and one for the user processes. We normally need several user processes to reside in
memory simultaneously. Therefore, we need to consider how to allocate available memory to
the processes that are in the input queue waiting to be brought into memory. In adjacent
memory allotment, each process is contained in a single contiguous segment of memory.

31| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Process

Memory Blocks

Memory Allocation

To gain proper memory utilization, memory allocation must be allocated efficient manner.
One of the simplest methods for allocating memory is to divide memory into several fixed-
sized partitions and each partition contains exactly one process. Thus, the degree of
multiprogramming is obtained by the number of partitions.

Multiple partition allocation: In this method, a process is selected from the input queue and
loaded into the free partition. When the process terminates, the partition becomes available
for other processes.

Fixed partition allocation: In this method, the operating system maintains a table that
indicates which parts of memory are available and which are occupied by processes. Initially,
all memory is available for user processes and is considered one large block of available
memory. This available memory is known as a “Hole”. When the process arrives and needs
memory, we search for a hole that is large enough to store this process. If the requirement is
fulfilled then we allocate memory to process, otherwise keeping the rest available to satisfy
future requests. While allocating a memory sometimes dynamic storage allocation problems
occur, which concerns how to satisfy a request of size n from a list of free holes. There are
some solutions to this problem:

Fragmentation

Fragmentation is defined as when the process is loaded and removed after execution from
memory, it creates a small free hole. These holes can not be assigned to new processes
because holes are not combined or do not fulfill the memory requirement of the process. To
achieve a degree of multiprogramming, we must reduce the waste of memory or
fragmentation problems. In the operating systems two types of fragmentation:

Internal fragmentation: Internal fragmentation occurs when memory blocks are allocated to
the process more than their requested size. Due to this some unused space is left over and
creating an internal fragmentation problem.Example: Suppose there is a fixed partitioning
used for memory allocation and the different sizes of blocks 3MB, 6MB, and 7MB space in
memory. Now a new process p4 of size 2MB comes and demands a block of memory. It gets
a memory block of 3MB but 1MB block of memory is a waste, and it can not be allocated to
other processes too. This is called internal fragmentation.

32| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

External fragmentation: In External Fragmentation, we have a free memory block, but we
can not assign it to a process because blocks are not contiguous. Example: Suppose (consider
the above example) three processes pl, p2, and p3 come with sizes 2MB, 4MB, and 7MB
respectively. Now they get memory blocks of size 3MB, 6MB, and 7MB allocated
respectively. After allocating the process pl process and the p2 process left IMB and 2MB.
Suppose a new process p4 comes and demands a 3MB block of memory, which is available,
but we can not assign it because free memory space is not contiguous. This is called external
fragmentation.

Paging

Paging is a memory management scheme that eliminates the need for a contiguous allocation
of physical memory. This scheme permits the physical address space of a process to be non-
contiguous.

Logical Address or Virtual Address (represented in bits): An address generated by the CPU.
Logical Address Space or Virtual Address Space (represented in words or bytes): The set of
all logical addresses generated by a program.

Physical Address (represented in bits): An address actually available on a memory unit.
Physical Address Space (represented in words or bytes): The set of all physical addresses
corresponding to the logical addresses.

Example:

If Logical Address = 31 bits, then Logical Address Space = 231 words =2 G words (1 G =
230)

If Logical Address Space = 128 M words =27 * 220 words, then Logical Address = log2 227
=27 bits

If Physical Address = 22 bits, then Physical Address Space =222 words =4 M words (1 M =
220)

If Physical Address Space = 16 M words = 24 * 220 words, then Physical Address = log2 224
= 24 bits

The mapping from virtual to physical address is done by the memory management unit
(MMU) which is a hardware device and this mapping is known as the paging technique.

The Physical Address Space is conceptually divided into several fixed-size blocks, called
frames.

The Logical Address Space is also split into fixed-size blocks, called pages.

Page Size = Frame Size

33| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Number of frames = Physical Address Space / Frame size= 4K /1K '~. 22
Number of pages = Logical Address Space / Page size= 8K/1K=8) = 23

y A ir
|Logical Address

13 bit 3 12 bit

Bh sl Al
Physical Address

&+

K
2 2 10
2 10 3 !
- ala 1(— |
K X N b— - A
[
N |

frame number

0
*3{(2)10=110); I contains
| sk 2 : 10 (J
L o109

Page Map Table (PMT)

or Page table

N

Physical Memory

The address generated by the CPU is divided into:

Page Number(p): Number of bits required to represent the pages in Logical Address Space
or Page number

Page Offset(d): Number of bits required to represent a particular word in a page or page size
of Logical Address Space or word number of a page or page offset.

Physical Address is divided into:

Frame Number(f): Number of bits required to represent the frame of Physical Address
Space or Frame number frame

Frame Offset(d): Number of bits required to represent a particular word in a frame or frame
size of Physical Address Space or word number of a frame or frame offset.

The hardware implementation of the page table can be done by using dedicated registers. But
the usage of the register for the page table is satisfactory only if the page table is small. If the
page table contains a large number of entries then we can use TLB(translation Look-aside
buffer), a special, small, fast look-up hardware cache.

The TLB is an associative, high-speed memory.

Each entry in TLB consists of two parts: a tag and a value.

When this memory is used, then an item is compared with all tags simultaneously. If the item
is found, then the corresponding value is returned.

34| Page Study Material

Paper Name: Operating Systems

Paper Code: PCCCS503

ap b
Q.No. | Question Blooms | CO | Marks
Level
1 "Consider the requests from processes in given order 300K, 25K, 125K, and 50K. | 3 5
Let there be two blocks of memory available of size 150K followed by a block
size 350K.
Which partition allocation schemes can satisfy the above requests? (NOTE : Here
we assumed a partition can be allocated to a process even if some other process
occupies a part of that partition.)
Show the working neatly with diagram. Justify your answer."
2 Consider an imaginary disk with 51 cylinders. A request comes in to read a block | 5§ 3 10
on cylinder 11. While the seck to cylinder 11 is in progress, new requests come in
for cylinders 1, 36, 16, 34, 9 and 12 in that order. Starting from the current head
position, what is the total distance (in cylinders) that the disk arm moves, to satify
all the pending requests, for each of the following disk scheduling algorithms:
FCFS, SSTF, SCAN & LOOK?
3 5 3 10
i. Consider the reference string 6, 1, 1,2, 0,3,4,6,0,2,1,2,1,2,0,3,2,1,2,0
for a memory with three frames and calculate number of page faults and page hits
by using FIFO (First In First Out) Page replacement algorithm
ii. Consider the reference string 6, 1, 1, 2,0, 3,4,6,0,2,1,2,1,2,0,3,2,1,2,0
for a memory with three frames and calculate number of page faults and page hits
by using LRU Least Recently Used) Page replacement algorithm
4 Consider the 3 processes, P1, P2 and P3 shown in the table. 5 3 10
Process Arrival time Time Units Required
P1 0 5
P2 1 7
P3 3 4
35| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

What will be the completion order of the 3 processes under the policies FCFS and
RR2 (round robin scheduling with CPU quantum of 2 time units)?

5 Consider a single level paging scheme with a TLB. Assume no page fault occurs. | 4 3 5
It takes 20 ns to search the TLB and 100 ns to access the physical memory. If
TLB hit ratio is 80%, the effective memory access time is msec.

6 Consider three CPU-intensive processes, which require 10, 20 and 30 time units | 4 3 5

and arrive at times 0, 2 and 6, respectively. How many context switches are
needed if the operating system implements a shortest remaining time first
scheduling algorithm? Do not count the context switches at time zero and at the
end.

7 Consider three processes, all arriving at time zero, with total execution time of 10, | § 3 10
20 and 30 units, respectively. Each process spends the first 20% of execution time
doing I/O, the next 70% of time doing computation, and the last 10% of time
doing I/O again. The operating system uses a shortest remaining compute time
first scheduling algorithm and schedules a new process either when the running
process gets blocked on /O or when the running process finishes its compute
burst. Assume that all I/O operations can be overlapped as much as possible. For
what percentage of time does the CPU remain idle?

8 Consider the following table of arrival time and burst time for three processes PO, | 4 3 10
P1 and P2.
Process Arrival time Burst Time
PO 0 ms 9 ms
P1 1 ms 4 ms
P2 2 ms 9 ms

The pre-emptive shortest job first scheduling algorithm is used. Scheduling is
carried out only at arrival or completion of processes. What is the average waiting
time for the three processes?

9 Assume every process requires 3 seconds of service time in a system with single | § 5
processor. If new processes are arriving at the rate of 10 processes per minute,
then estimate the fraction of time CPU is busy in system?

10 Consider a logical address space of eight pages of 1024 words each, mapped onto | 4 10
a physical memory of 32 frames.

a. How many bits are there in the logical address?
b. How many bits are there in the physical address?

36|Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

MODULE 4

Disc Scheduling:It is done by operating systems to schedule I/O requests arriving for disk. Disk
scheduling is also known as I/O scheduling.

Disk scheduling is important because:

e Multiple I/O requests may arrive by different processes and only one I/O request can
be served at a time by disk controller. Thus other I/O requests need to wait in waiting
queue and need to be scheduled.

e Two or more request may be far from each other so can result in greater disk arm
movement.

e Hard drives are one of the slowest parts of computer system and thus need to be
accessed in an efficient manner.

Secondary storage devices are those devices whose memory is non volatile, meaning, the
stored data will be intact even if the system is turned off. Here are a few things worth noting
about secondary storage.

o Secondary storage is also called auxiliary storage.

e Secondary storage is less expensive when compared to primary memory like RAMs.

o The speed of the secondary storage is also lesser than that of primary storage.

e Hence, the data which is less frequently accessed is kept in the secondary storage.

o A few examples are magnetic disks, magnetic tapes, removable thumb drives etc.

Magnetic Disk Structure

In modern computers, most of the secondary storage is in the form of magnetic disks. Hence,
knowing the structure of a magnetic disk is necessary to understand how the data in the disk
is accessed by the computer.

37| Page Study Material

Paper Name: Operating Systems

Paper Code: PCCCS503

track !
B spindle
| g
sector /‘\
< | 4
e m
cylinder |
l | ©/w head
—.
-’-l‘-"“
platter e,
I arm

Structure of a magnetic disk

4 arm assembly

A magnetic disk contains several platters. Each platter is divided into circular shaped tracks.
The length of the tracks near the centre is less than the length of the tracks farther from the
centre. Each track is further divided into sectors, as shown in the figure.

Tracks of the same distance from centre form a cylinder. A read-write head is used to read

data from a sector of the magnetic disk.

The speed of the disk is measured as two parts:

38| Page

Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

o Transfer rate: This is the rate at which the data moves from disk to the computer.
e Random access time: It is the sum of the seek time and rotational latency.

Seek time is the time taken by the arm to move to the required track. Rotational latency is
defined as the time taken by the arm to reach the required sector in the track.

Even though the disk is arranged as sectors and tracks physically, the data is logically
arranged and addressed as an array of blocks of fixed size. The size of a block can
be 512 or 1024 bytes. Each logical block is mapped with a sector on the disk, sequentially. In
this way, each sector in the disk will have a logical address.

Disk Scheduling Algorithms

There are several Disk Several Algorithms. We will discuss each one of them.

FCEFS (First Come First Serve)

FCES is the simplest of all Disk Scheduling Algorithms. In FCFS, the requests are addressed
in the order they arrive in the disk queue. Let us understand this with the help of an example.

0 16 24 43 50 82 100 140 150 170 190 199

== et =

First Come First Serve

39| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Example:

Suppose the order of request is- (82,170,43,140,24,16,190)
And current position of Read/Write head is: 50

So, total overhead movement (total distance covered by the disk arm) =

(82-50)+(170-82)+(170-43)+(140-43)+(140-24)+(24-16)+(190-16) =642

Advantages of FCFS
Here are some of the advantages of First Come First Serve.

o Every request gets a fair chance

¢ No indefinite postponement
Disadvantages of FCFS
Here are some of the disadvantages of First Come First Serve.

e Does not try to optimize seek time

e May not provide the best possible service
SSTF (Shortest Seek Time First)
In SSTF (Shortest Seek Time First), requests having the shortest seek time are executed first.
So, the seek time of every request is calculated in advance in the queue and then they are
scheduled according to their calculated seek time. As a result, the request near the disk arm
will get executed first. SSTF is certainly an improvement over FCFS as it decreases the

average response time and increases the throughput of the system. Let us understand this with
the help of an example.

Example:

40| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

v

-+ = —

0 Je 5t 3 20 85 100 0 7120 1A0 Jo0 Too

Shortest Seek Time First

Suppose the order of request is- (82,170,43,140,24,16,190)
And current position of Read/Write head is: 50

So,
total overhead movement (total distance covered by the disk arm) =
(50-43)+(43-24)+(24-16)+(82-16)+(140-82)+(170-140)+(190-170) =208
Advantages of Shortest Seek Time First
Here are some of the advantages of Shortest Seek Time First.
o The average Response Time decreases
o Throughput increases
Disadvantages of Shortest Seek Time First
Here are some of the disadvantages of Shortest Seek Time First.

e Overhead to calculate seek time in advance

41| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

e Can cause Starvation for a request if it has a higher seek time as compared to
incoming requests

o The high variance of response time as SSTF favors only some requests
SCAN

In the SCAN algorithm the disk arm moves in a particular direction and services the requests
coming in its path and after reaching the end of the disk, it reverses its direction and again
services the request arriving in its path. So, this algorithm works as an elevator and is hence
also known as an elevator algorithm. As a result, the requests at the midrange are serviced
more and those arriving behind the disk arm will have to wait.

Example:

I I I

0 7Te s5¢ i3 20 83 T00 I45720 TMO To0 Too

SCAN Algorithm

Suppose the requests to be addressed are-82,170,43,140,24,16,190. And the Read/Write arm
is at 50, and it is also given that the disk arm should move “towards the larger value”.

Therefore, the total overhead movement (total distance covered by the disk arm) is
calculated as

= (199-50) + (199-16) = 332

42| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Advantages of SCAN Algorithm
Here are some of the advantages of the SCAN Algorithm.
o High throughput
o Low variance of response time
o Average response time
Disadvantages of SCAN Algorithm
Here are some of the disadvantages of the SCAN Algorithm.
o Long waiting time for requests for locations just visited by disk arm
C-SCAN
In the SCAN algorithm, the disk arm again scans the path that has been scanned, after

reversing its direction. So, it may be possible that too many requests are waiting at the other
end or there may be zero or few requests pending at the scanned area.

These situations are avoided in the CSCAN algorithm in which the disk arm instead of
reversing its direction goes to the other end of the disk and starts servicing the requests from
there. So, the disk arm moves in a circular fashion and this algorithm is also similar to the
SCAN algorithm hence it is known as C-SCAN (Circular SCAN).

Example:

43 |Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

0 16 24 43 50 82 100 142150 170 190 199

" Tt

Circular SCAN

Suppose the requests to be addressed are-82,170,43,140,24,16,190. And the Read/Write arm
is at 50, and it is also given that the disk arm should move “towards the larger value”.

So, the total overhead movement (total distance covered by the disk arm) is calculated as:

=(199-50) + (199-0) + (43-0) = 391

Advantages of C-SCAN Algorithm
Here are some of the advantages of C-SCAN.
e Provides more uniform wait time compared to SCAN.

LOOK

LOOK Algorithm is similar to the SCAN disk scheduling algorithm except for the difference
that the disk arm in spite of going to the end of the disk goes only to the last request to be

44 |Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

serviced in front of the head and then reverses its direction from there only. Thus it prevents
the extra delay which occurred due to unnecessary traversal to the end of the disk.

Example:

0 16 24 43 50 82 100 142 150 170 190 199

LOOK Algorithm

Suppose the requests to be addressed are-82,170,43,140,24,16,190. And the Read/Write arm
is at 50, and it is also given that the disk arm should move “towards the larger value”.

So, the total overhead movement (total distance covered by the disk arm) is calculated as:

= (190-50) + (190-16) = 314

C-LOOK

As LOOK is similar to the SCAN algorithm, in a similar way, C-LOOK is similar to the
CSCAN disk scheduling algorithm. In CLOOK, the disk arm in spite of going to the end goes
only to the last request to be serviced in front of the head and then from there goes to the
other end’s last request. Thus, it also prevents the extra delay which occurred due to
unnecessary traversal to the end of the disk.

Example:

45| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

1. Suppose the requests to be addressed are-82,170,43,140,24,16,190. And the
Read/Write arm is at 50, and it is also given that the disk arm should move “towards
the larger value”

0 16 24 43 50 82 100 142150 170 190 199

C-LOOK
So, the total overhead movement (total distance covered by the disk arm) is calculated as
=(190-50) + (190-16) + (43-16) = 341

A computer file is defined as a medium used for saving and managing data in the computer
system. The data stored in the computer system is completely in digital format, although
there can be various types of files that help us to store the data.

What is a File System?
A file system is a method an operating system uses to store, organize, and manage files and
directories on a storage device. Some common types of file systems include:

46| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

1. FAT (File Allocation Table): An older file system used by older versions of Windows
and other operating systems.

2. NTFS (New Technology File System): A modern file system used by Windows. It
supports features such as file and folder permissions, compression, and encryption.

3. ext (Extended File System): A file system commonly used on Linux and Unix-based
operating systems.

4. HFS (Hierarchical File System): A file system used by macOS.

5. APFS (Apple File System): A new file system introduced by Apple for their Macs and
10S devices.

A file is a collection of related information that is recorded on secondary storage. Or file is

a collection of logically related entities. From the user’s perspective, a file is the smallest

allotment of logical secondary storage.

The name of the file is divided into two parts as shown below:

e name

e extension, separated by a period.

Issues Handled By File System

We’ve seen a variety of data structures where the file could be kept. The file system’s job is

to keep the files organized in the best way possible.

A free space is created on the hard drive whenever a file is deleted from it. To reallocate

them to other files, many of these spaces may need to be recovered. Choosing where to

store the files on the hard disc is the main issue with files one block may or may not be

used to store a file. It may be kept in the disk’s non-contiguous blocks. We must keep track

of all the blocks where the files are partially located.

Files Attributes And Their Operations

Attributes Types Operations
Name Doc Create
Type Exe Open
Size Ipg Read
Creation Data Xis Write
Author C Append

47 |Page Study Material

Paper Name: Operating Systems

Paper Code: PCCCS503

Attributes

Last Modified

protection

File type

Executable

Object

Source Code

Batch

Text

Word Processor

Archive

Multimedia

48 |Page

Types

Java

class

Usual extension

exe, com, bin

obj, o

C, java, pas, asm, a

bat, sh

txt, doc

wp, tex, rrf, doc

arc, zip, tar

mpeg, mov, rm

Operations
Truncate
Delete

Close

Function

Read to run machine
language program

Compiled, machine
language not linked

Source code in various
languages

Commands to the
command interpreter

Textual data, documents

Various word processor
formats

Related files grouped into
one compressed file

For containing audio/video

Study Material

Paper Name: Operating Systems

Paper Code: PCCCS503

File type Usual extension
Markup xml, html, tex
Library lib, a ,so, dll
Print or View gif, pdf, jpg

File Directories

Function

information

It is the textual data and
documents

It contains libraries of
routines for programmers

It is a format for printing
or viewing an ASCII or
binary file.

The collection of files is a file directory. The directory contains information about the files,
including attributes, location, and ownership. Much of this information, especially that is
concerned with storage, is managed by the operating system. The directory is itself a file,

accessible by various file management routines.
Below are information contained in a device directory.
o Name

« Type

e Address

e Current length

e Maximum length

e Date last accessed

e Date last updated

e Ownerid

e Protection information

The operation performed on the directory are:
e Search for a file

e Create a file

e Delete a file

e List a directory

e Rename a file

e Traverse the file system

49| Page

Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Advantages of Maintaining Directories

o Efficiency: A file can be located more quickly.

e Naming: It becomes convenient for users as two users can have same name for
different files or may have different name for same file.

e Grouping: Logical grouping of files can be done by properties e.g. all java programs,
all games etc.

Single-Level Directory

In this, a single directory is maintained for all the users.

o Naming problem: Users cannot have the same name for two files.

e Grouping problem: Users cannot group files according to their needs.

Directory | cat xkcdl a |dtr |ims] trs [dog imp | sos
Pt
Files é) Cgé é é) O Q Q

Two-Level Directory

In this separate directories for each user is maintained.

e Path name: Due to two levels there is a path name for every file to locate that file.
e Now, we can have the same file name for different users.

e Searching is efficient in this method.

50| Page Study Material

Paper Name: Operating Systems

Paper Code: PCCCS503

master file — 2 3
directory user2|user
user file
Directory | dog [xkcd dir | a | trs

!

Tree-Structured Directory

The directory is maintained in the form of a tree. Searching is efficient and also there is
grouping capability. We have absolute or relative path name for a file.

51|Page

Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

albfc
dog | cat srs | ty | lore no | lel | v
imp| v | lel dog | iui | leet

ty |get |cat

File Allocation Methods

There are several types of file allocation methods. These are mentioned below.

o Continuous Allocation

o Linked Allocation(Non-contiguous allocation)

e Indexed Allocation

Continuous Allocation

A single continuous set of blocks is allocated to a file at the time of file creation. Thus, this
is a pre-allocation strategy, using variable size portions. The file allocation table needs just
a single entry for each file, showing the starting block and the length of the file. This
method is best from the point of view of the individual sequential file. Multiple blocks can
be read in at a time to improve I/O performance for sequential processing. It is also easy to
retrieve a single block. For example, if a file starts at block b, and the ith block of the file is
wanted, its location on secondary storage is simply b+i-1.

52| Page Study Material

Paper Name: Operating Systems

File A
o1 (] - -
s o1 71 s o
File B

ol o D o e[]
s w171l R

File C

20 > - > -
File E

25 2o [27 [2s [20|

File D

Y EN BRI
—//

File allocation table

File name Start block Length
File A 2 3
File B 9 5
File C 18 B
File D 30 2
File E 26 3

Disadvantages of Continuous Allocation

Paper Code: PCCCS503

o External fragmentation will occur, making it difficult to find contiguous blocks of space
of sufficient length. A compaction algorithm will be necessary to free up additional

space on the disk.

e Also, with pre-allocation, it is necessary to declare the size of the file at the time of

creation.

Linked Allocation(Non-Contiguous Allocation)

Allocation is on an individual block basis. Each block contains a pointer to the next block
in the chain. Again the file table needs just a single entry for each file, showing the starting
block and the length of the file. Although pre-allocation is possible, it is more common
simply to allocate blocks as needed. Any free block can be added to the chain. The blocks
need not be continuous. An increase in file size is always possible if a free disk block is
available. There is no external fragmentation because only one block at a time is needed but
there can be internal fragmentation but it exists only in the last disk block of the file.
Disadvantage Linked Allocation(Non-contiguous allocation)

53| Page

Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Internal fragmentation exists in the last disk block of the file.

There is an overhead of maintaining the pointer in every disk block.
If the pointer of any disk block is lost, the file will be truncated.

It supports only the sequential access of files.

Indexed Allocation

It a
file

ddresses many of the problems of contiguous and chained allocation. In this case, the
allocation table contains a separate one-level index for each file: The index has one

entry for each block allocated to the file. The allocation may be on the basis of fixed-size
blocks or variable-sized blocks. Allocation by blocks eliminates external fragmentation,
whereas allocation by variable-size blocks improves locality. This allocation technique

supports both sequential and direct access to the file and thus is the most popular form of
file allocation.
File B
o[1
s[_] o]
10 11 | I
is|]]
L - -7 1
20]2 8
. 3
~. 14
2s| |26 |2 -
30| | 31] | 32]
File allocation table
File name Index block
L X B *eee
File B 24
[X N] [X N]
Disk Free Space Management

Just as the space that is allocated to files must be managed, so the space that is not currently
allocated to any file must be managed. To perform any of the file allocation techniques, it is

nec

54 |

essary to know what blocks on the disk are available. Thus we need a disk allocation

Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

table in addition to a file allocation table. The following are the approaches used for free

space management.

1. Bit Tables: This method uses a vector containing one bit for each block on the disk.
Each entry for a 0 corresponds to a free block and each 1 corresponds to a block in use.
For example 00011010111100110001
In this vector every bit corresponds to a particular block and 0 implies that that
particular block is free and 1 implies that the block is already occupied. A bit table has
the advantage that it is relatively easy to find one or a contiguous group of free blocks.
Thus, a bit table works well with any of the file allocation methods. Another advantage
is that it is as small as possible.

2. Free Block List: In this method, each block is assigned a number sequentially and the
list of the numbers of all free blocks is maintained in a reserved block of the disk.

Free DBA y
a
b
c
Disk Block I d
I
i
s [
|
|

Advantages of File System

e Organization: A file system allows files to be organized into directories and
subdirectories, making it easier to manage and locate files.

e Data protection: File systems often include features such as file and folder
permissions, backup and restore, and error detection and correction, to protect data from
loss or corruption.

o Improved performance: A well-designed file system can improve the performance of
reading and writing data by organizing it efficiently on disk.

55| Page Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

Disadvantages of File System

o Compatibility issues: Different file systems may not be compatible with each other,

making it difficult to transfer data between different operating systems.

o Disk space overhead: File systems may use some disk space to store metadata and

other overhead information, reducing the amount of space available for user data.

e Vulnerability: File systems can be vulnerable to data corruption, malware, and other

security threats, which can compromise the stability and security of the system.

Q.No. | Question Blooms | CO
Level

Marks

1 Suppose a disk has 201 cylinders, numbered from 0 to 200. At some time the disk | § 4
arm is at cylinder 100, and there is a queue of disk access requests for cylinders
30, 85, 90, 100, 105, 110, 135 and 145. If Shortest-Seek Time First (SSTF) is
being used for scheduling the disk access, the request for cylinder 90 is serviced
after servicing which number of requests?

10

2 Consider an imaginary disk with 51 cylinders. A request comes in to read a block | § 4
on cylinder 11. While the seek to cylinder 11 is in progress, new requests come in
for cylinders 1, 36, 16, 34, 9 and 12 in that order. Starting from the current head
position, what is the total distance (in cylinders) that the disk arm moves, to satify
all the pending requests, for each of the following disk scheduling algorithms:
FCEFS, SSTF, SCAN & LOOK?

10

3 Suppose the following disk request sequence (track numbers) for a disk with 100 | § 4
tracks is given: 45, 20, 90, 10, 50, 60, 80, 25, 70. Assume that the initial position
of the R/W head is on track 50. What will be the additional distance (in terms of
number of tracks) that will be traversed by the R/W head when the Shortest Seek
Time First (SSTF) algorithm is used compared to the SCAN (Elevator) algorithm
(assuming that SCAN algorithm moves towards 100 when it starts execution)

10

4 Evaluate the efficiency and effectiveness of different file organization methods | 5 4
(e.g., sequential, indexed, hashed) in managing large volumes of data.

10

5 Synthesize a comprehensive file management strategy for a multinational | 6 4
corporation with geographically dispersed offices, considering factors such as
security, accessibility, and scalability.

10

6 Assess the trade-offs between different disk scheduling algorithms | 5 4
(e.g., FCFS, SSTF, SCAN, C-SCAN, LOOK, C-LOOK) in terms
of throughput, response time, and fairness, and recommend the
most suitable algorithm for specific system configurations.

10

56| Page Study Material

36 Chapter1 Introduction A

Exercises

11 Ina mu]hprogrammmg and time-sharing envirdnment, several users

1.2

13

14

1.5

1.6

- 1.7

1.8

share the system simultaneously. This situation can result i m various
security problems.

a. What are two such problems7

b. Can we ensure the same degree of security in a time-shared
machme as'in a dedicated machine? Explain your answer.

The issue of resource utilization shows up-in different forms in different

types of operating: systems. List what ‘resources must be managed
carefully.in the following settings:

a. ‘Mainframe or mlmcomputer systems
b. Workstations connected to servers

¢. Handheld cdmputers

Which of the functionalities hsted below need to be supported by the
operating system for the following two settings: (a) handheld devices

- and (b) real-time systems T k. P

a. Batch p;ogra_mmmg
b. Virtual memory .
c. Time sharing .

Describe the differences between symmemc and asymmetnc multipro-
cessing. What are three advantages and one dlsadvantage of multipro-
cessor systems?

“Distinguish between the client- -server and peer-to-peer models of
‘distributed systems.

_ Consider a computing cluster consxstmg of two nodes running a |

database. Describe two ways in which the cluster software can manage
access to the data on the disk. Discuss the benefits and disadvantages of

-each.

What is the purp‘o§e of interrupts? What are the differ‘eﬁces between a
trap and an interrupt? Can traps be generated intentionally by a user
program? If so, for what purpose? '

Direct memory access is used for high-speed 1/0-devices in order to

~-avoid increasing the CPU's execution load.

a. How does the CPU interface thh the device to coordinate the
transfer?

b. How does the CPU know when the memory operations are
complete?”

c. The CPU is allowed toxxecute other programs while the DMA
controller is transfetring data. Does this process interfere with

Biblivaraphical Nates 37

the execution of the user programs? If so, describe what forms of
interference are caused.

1.9 . Give two reasons why caches are useful. What problems do they solve?
What problems do they cause? If a cache can be made as large as the
.device for which it is caching (for instance, a cache as large as a disk),
why not make it that large and eliminate the device?

1.10 - Discuss, with examples, how the problem of maintaining coherence of
cached data'manifests itself in the following processing environments:

.+ a. Single-processor systems
b. Multiprocessor systems
¢ Distributed systems _

"1.11 ‘What network: confxguratlon would best suit the following environ-
: wments" : '
a A dormxtory floor
.. b A university campus
‘c. Astate’
d. A nation

112 Define the essential- properties of the following types of nperating
systems:

a. ‘Batch |
Interactive
Time sharing

" Real timé

Network

- Parallel
Distributed
Clustered
Handheld

2@ w0 Bn O

—o
.

Bibliographical Notes

Brookshear [2003] provides an overview of computer science in general.
An overview of the Linux operating system is presented in. Bovet and
- Cesati [2002]. Solomon and Russinovich [2000] give an overview of Microsoft
-Windows and considerable technical detail about the system internals and
components. Mauro and McDougall [2001] cover the Solaris operating system.
Mac 05 X is presented at http:/ /www.apple.com/macosx.
- Coverage of peer-to-peer systems includes Parameswaran et al. {2001},
Gong [2002], Ripeanu et al. {2002], Agre [2003] Balakrishnan et al. [2003}, and

. Excreises 69

may come from files during batch-mode executio i i
wh.en in an interactive or time-shared mode. Syste'xlno;;rdc:;;trlrz'sf;fer;:otvei:ir::lnfc:
satisfy many common user requests. '

The types of requests vary according to level, The system-call level must
provide the basic: functions, such as process control and file -and device
manipulation. Higher-level requests, satisfied by the command interpreter or

- System programs, are translated into a sequence of system calls. System services
can be classified into several categories: program control, status requests, and
I70 requests. Program errors can be considered implicit requests for service.

Once the system services are defined, the structure of the operating system
can be developed. Various tables are needed to record the information that
defines the state of the computer system and the status of the system’s jobs.

The design of a new ‘operating system is a major task. It is important that
the goals of the systeni be well defined before the design begins. The type of
system desired is the foundation for choices among various algorithms and
strategies that will be needed. ;

Since an operating system is large, modularity is important. Designing a

- System as a sequence of layers or using a microkernel is considered a good
technique. The virtual-machine concept takes the layered approach and treats
both the kernel of the operating system and the hardware as though they were
hardware. Even other operating systems may be loaded on top of this virtual
machine., B - '

Throughout the entire operating-system design cycle, we must be careful
to separate policy decisions from implementation details {mechanisms). This
separation allows maximum flexibility if policy decisions are to be changed
later. - fL -

Operating systems are now almost always written in a systems-
implementation language or in a higher-level language. This feature improves
their implementation, maintenance, and portability. To create an operating
system.for a particular machine configuration, we must perform system
generation. : . |

For a computer system to begin running, the CPU must initialize and start

executing the bootstrap program in firmware. The bootstrap can execute the

' operating system directly if the operating system is also in the firmware, or

it can complete a sequence in which it loads progressively smarter programs
from firmware and disk until the operating system itself is loaded into memory
and executed. . . '

Exercises

—————

2.1 The services and functions provided by an operating system can be
~ divided into two main categories. Briefly describe the two categories
and discuss how they differ. . . -
2.2 List five services provided by an operating system that are designed to
make it more convenient for users to use the computer system. In what
cases it would be impossible for user-level programs to provide these

services? Explain.

20 Chapter2 System Structures

2.3 Describe how you could obtain a statistical profile of the amount of time
spent by a program executing different sections of its code. Discuss the

importance of obtaining such a statistical profile.

2.4 What are the five major activities of an operating system with regard to
file management? '
2.5 What is the purpose of the command interpreter? Why is it usually

separate from the kernel? Would it be possible for the user to develop
a new command interpreter using the system-call interface provided by

the operating svstem?

2,6 What are the two models of interprocess communication? What are the
strengths and weaknesses of the two approaches?

\l})(Why does Java provide the ability to call from a Javé program native
methods that are written in, say, C or C++? Provide an example of a

situation in which a native method is useful.

ﬁ Itis sometimes difficult to achieve a layered approach if two components |
of the opefrating system are dependent on each other. Identify a scenario

in which it is unclear how to layer two system components that require
. tight coupling of their functionalities.
2.9 In what ways is the. modular kernel approach similar to the layered
approach? In what ways does it differ from the layered.approach?

2.10 What is the main advantage for an operating-system designer of using
a virtual-machine architecture? What is the main advantage for a user?

2.11 What is the relationship between a guest operating system and a host
operating system in a system like VMware? What factors need to be

, considered in choosing the host operating system?

g % The experimental Synthesis operating system has an assembler incor-
porated in the kernel. To optimize system-call performance, the kernel
assembles routines within kernel space to minimize the path that the
system call must take through the kernel. This approach is the antithesis

" of the layered approach, in which the path through the kernel is extended
to make building the operating system easier. Discuss the pros and cons
of the Synthesis approach to kernel design and system-performance-

optimization, |

Project--Adding a System Call to the Linux Kemnel

In this project, you will study the system call interface provided by the Linux.
operating system and how user programs communicate with the operating
system kernel via this interface. Your task is to incorporate a new system call
into the Linux kernel, thereby expanding the functionality of the operating

system.

114 Chapter 3 Process-Concept

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int value = 5;
Ant main()
;{:m.t pid;

pid = fork();

if (pid == 0) {/* child process */
value +n 15; ' ’ :
}

else if (pld > 0) {/* parent process */

wait (NULL) ;
printf ("PARENT: value = %d",value); /' LINE A */

exit{0);

’ o
| Figure 323 Cprogram.
Exercises . |
3.1 Descnbe the’ differences among short-term, medxum-term, and long-
term schedulmg ,
3.2 Describe. the actions taken by a kemel to context-sthch between
. processes. .
3.3 Usmg the program shown in anure323 explam what w1llbeoutput at
Line A.

34 Whatare the beriefits and the dxsadvantages of each of the followmg"_' P
Consider both the system level and the programmer level. ;

a. Synchronous and asynchronous commumcatxon
b. Automatic and explicitbuffering

c. Send. by copy-and send by reference

d. Fxxed-sxzed and vanablesxzed messages

. 3& “The Fibonacci, sequence is the series of numbers 0, 1 1,2:3,5,8, ...
| Formally, it canbeexpressed as: o - :
f 'bo = e . ‘: '
’f%p:lﬁ f_ - it
fiby = fibay + fibyz -
Writea C programusmg the fork() syst
Fibonacci sequence in the child process.

em call that that generates the
The number of the sequence

182 Chapter 5 Process Scheduling

Multilevel queue algorithms allow different algorithms to be used for
different classes of processes. The most common model includes a foreground
interactive queue that uses RR scheduling and a background batch queue that
uses FCFS scheduling. Multilevel feedback queues allow processes to move

from one queue to another. o
Many contemporary computer systems support multiple processors and

allow each processor to schedule itself independently. Typically, each processor
. maintains its own private queue of processes (or threads), all of which are
available to run. Issues related to multiprocessor scheduling include processor

affinity and load balancing,.
- Operating systems supporting threads at the kernel level must schedule
threads—not processes—for execution. This is the case with Solaris and
Windows XP. Both of these systems schedule threads using preemptive, .
priority-based scheduling algorithms, including support for real-time threads.
The Linux process scheduler uses a priority-based algorithm with real-time
- support as well. The scheduling algorithms for these three operating systems
typically favor interactive over batch and CPU-bound processes.

. The wide variety of scheduling algorithms demands that we have methods
to select among algorithms. Analytic methods use mathematical analysis to
determine the performance of an algorithm, Simulation methods determine
performance by imitating the scheduling algorithm on a “representative”
sample of processes and computing the resulting performance. However, sim-

* - ulation can-at best provide an approximation of actual system performance;

* the only reliable technique for evaluating a scheduling algorithm is to imple-

~ ment the algorithm on an actual system and monitor its performance in a
- “real-world” environment. | '

Exercises

N . 51 ‘Di'scuss how the following pairs"of scheduling criteria conflict in certain
: : Setﬁngs_'. : 4 ‘ L .
a.. CPU uﬁlizaﬁoxﬁ_and-—resj:c)nse time .
. b. Average tumaround time and maximum waiting time
"¢, 1/0 device utilization and CPU utilization

52 Consider the following set of processes, with the length of the CPU busst
" givenin milliseconds: | e

Process Burst Time Priority

) P, 10 3
P, 1 1
P, 2 3
P, 1 4
Ps. 5 2

Exercises 183

The processes are assumed to have arrived i .
: arriv
all at time 0. éd in the order Py, Py, P3, Py, Ps,

a. Draw four Gantt charts that illustrate the i
. ‘ the execution .of these
processes using thg following scheduling algorithms: FCFs, SJF
nonpreemptive priority (a smaller priority number implies a

| e, _\’l\\i\g\ller priority), and RR (quantum = 1).

5.3

5.4

5.5

56

50 7

58

b. Wha;-i;z\fffe“ﬁlmaround time of each proc)
Wi ess for each
scheduling algorithms in parta? - P each of the

C What. is the waiting time of each process for each of the scheduling
algorithms in part a? :

- d. Which of.the algorithms in part a results in the minimum average
waiting time (over all processes)?

Why is it important for the scheduler to distinguish 1/0-bound programs
from CPU-bound programs? K

Which of the fo‘ll;OWing scheduling algorithrhs could result in'starvation?

a. First-come, first-served |

b. Shortest job first

¢. Round robin

d. Priority - |
Consider a system runmng ten 1/0-bound tasks and one CPU-bound
task. Assume that the I/0-bound tasks issué an I/0 operation once for
every millisecond of CPU computing and that each 1/0 operation takes
10 milliseconds to.complete. Also assume that the context-switching
overhead is 0.1 millisecond and that all processes are long-running tasks.
What is the CPU utilization for a round-robin scheduler when:

a. The time quantumis 1 millisecond .

b. Thetime quantum is, 10 milliseconds

‘Consider a system ,ir"nplve'menting multilevél queue scheduling. What
strategy can a computer user employ to maximize the amount of CPU

time allocated to the user’s process? o
Explain the differences in the degree to which the following scheduling

 algorithms discriminate in favor of short processes:

a. FCFS
b. RR
¢. Multilevel feedback queues Sk
Using the Windows XP 'scheduling a‘lgbrithm, what is the numeric

priority of a thread for the following scenarios?

a. Athread in the REALTIME.PRIORITY_CLASS with a relative priority
- of HIGHEST i

© 226- Chapter6 Synchronization y
The operating system must provide the means to guard against timing
errors. Several language constructs have been proposed to deal with these prob-
lems. Monitors provide the synchronization mechanism for sharing abstract -
- data types. A condition variable provides a method by which a monitor
procedure can block its execution until it is signaled to continue. s

1 Operating systems also provide support for synchronization. For example, -

- Solaris, Windows XP, and Linux provide mechanisms such as semaphorss,
mutexes, spinlocks, and condition variables to control access to shared data.
The Pthreads API provides support for mutexes and condition variables.

A transaction is a program unit that must be executed atornically; that
is, either all the operations associated with it are executed to ¢ompletion, or
none are performed. To ensure atomicity despite system failure, we can use a

- write-ahead log.: All updates are recorded on the log, which'is kept in stable
~ ‘storage. If a system crash occurs, the.information in the log is used in restoring
. thestate of the updated data jtems, which is accomplished by use of the undo
~and redo operations. To reduce the overhead in searching the log after a system-
~failure has occurred, we can use a checkpoint scheme. =~ ,
~ * To ensure serializability when the execution of several transactions over-
- laps, we must use a concurrency-control scheme. Various concurrency-control -
- .+ schemes ensure serializability by.delaying an operation or aborting the trans-
action that issued the operation. The most common ones are locking protocols
- and timestamp ordering schemes.: Loee Do T e

Exercises |
L , 6;1‘ The first k'n‘dw.n‘cb.rrect sdft'waré solution to the critical-section problem
" for two processes was developed by Dekker. The two processes, Py and
Pj, share the following variables: o T et AR
" boolean flag[2}; /* initially false #/
int turn; I '
< The structure of process P; (i == 0 or 1)is shown in Figure 6.27; the other
process is P;j (j == 1 or 0). Prove that the algorithm satisfies all three -
requirements for the critical-section problem. . Ny
62 Explain why spinlocks are not appropriate for single-processor systems
' yet are often used in multiprocessor systems. . | |
6.3 Explain why implementing synchronization primitives by disabling .
“interrupts is not appropriate in a single-processor system if the syn- -
| chronization primitives are to be used in user-level programs. &
. 64 Describe how the Swap()- instruction can be used to provide mutual
B exclusion that satisfies the bounded-w\gi’ting requirement.
g4 5 Servers can be designed ‘tq limit the number of open conngcti’ons. For
- example, a server may wish to have only N socket connections at any
point in time. As soon as N connections are made, the server will:
not accept another incoming connection until an existing connection
‘i3 released. Explain how semaphores can be used by a server to limit the
number of concurrent connections.

Exercises 261

a Increase Available (new resources added). -
b. ,Deg:mase Available (resource perinanentl_y rémoved from system).

¢. Increase Max for one process (the process needs more resources
than allowed; it may want more).

d. Decrease.Max for one process (the;process decides it does not need
that many resources). . .

e. Increase the number of processes.
f. Decrease the number of processes. .

7.5 '(.Ionsider'-g system consisting of m résources' of the same type béing
shared by n processes: Resources can be requested and released by
processes only one at a time. Show that the system is deadlock free

if the following two conditions hold:
. a. The nﬁgxixnum neea of each process is between 1 and m resources:
'b. " The sum of all maximum needs is less than m + n. |
7.6 Consider-the dining-philosophers problem where the. chopsticks are
.~ placed at the center of the table and any two of them could be used
by a philosopher. Assume that requests -for ¢hopsticks-are made one
‘at a time. Describe a simple rule for determining whether a particular
request.could be satisfied without causing deadlock given the current
-allocation of chopsticks to philosophers.-- =~~~ .

e 7.7 We can vbbt‘aiﬁ-’tf\‘é'_'bé}ikéi",s Télg'o'r'ithm for a single résource type from

“the general banker’s algorithm simply by redicing the dimensionality
" ofthe various arrays by 1. Show through an example that the multiple-

resource-type banker’s scheme cannot be implemented by individual =

"' application of the single-resource-type scheme to each resource type.

78 "C(,S_‘,n_sidér_vthe' f{)llowing shaps_hbt 'ofasjstgm: =

. Allocation _Max_ Available
. r..' . ABCD. ABCD ABCD
| Py '0012° 0012 1520
o eR, T10000 0 175007
CTlip 1354 2356
... B - 0632 0652
B 0014 0656
Answer the following questions using the banker’s algorithm: *

e) a. What isthefcﬁntént ofvt'he matrix Nged?
N b. Is tihe,systgn,i ina szi_fe'state?, E

S

1

“c."If a request from process, Py arives for (0/420), can the mequest. .

be granted immediately? .

T

Review Questions

51 List four design issues for which the concept of concurrency is relevant.

52 What are three contexts in which concurrency arises?

53 What is the basic requirement for the execution of concurrent processes?

5.4 List three degrees of awareness between processes and briefly define each.

55 What is the distinction between competing processes and cooperating processes?

5.6 List the three control problems associated with competing processes and briefly de-
fine each.

5.7 List the requirements for mutual exclusion.
58 What operations can be performed on a semaphore?

CHAPTER. 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

5.9 What is the difference between binary and general semaphores?
510 ‘What is the difference between strong and weak semaphores?
511 What is a monitor?
512 ‘What is the distinction between blocking and nonblocking with respect to messages?
513 ‘What conditions are generally associated with the readers/writers problem?

Review Questions

6.1 Give examples of reusable and consumable resources.

6.2 What are the three conditions that must be present for deadlock to be possible?
6.3 What are the four conditions that create deadlock?

6.4 How can the hold-and-wait condition be prevented?

6.5 List two ways in which the no-preemption condition can be prevented.

6.6 How can the circular wait condition be prevented?

6.7 What is the difference among deadlock avoidance, detection, and prevention?

current allocation maximum demand still needs
process rl 2 3 r4 rl 2 3 r4 rl 2 3 4
pl 0 0 1 2 0 0 1 2
p2 2 0 0 0 2 7 5 0
p3 0 0 3 6 6 5 6
p4 2 3 5 B 3 5 6
p3 0 3 3 0 6 5 2

a. Compute what each process still might request and display in the columns labeled
“still needs.”

b. Is this system currently in a safe or unsafe state? Why?

¢. Is this system currently deadlocked? Why or why not?

d. Which processes, if any, are or may become deadlocked?

¢. If a request from p3 arrives for (0, 1, 0, 0), can that request be safely granted im-
mediately? In what state (deadlocked, safe, unsafe) would immediately granting
that whole request leave the system? Which processes, if any, are or may become
deadlocked if this whole request is granted immediately?

6.6 Apply the deadlock detection algorithm to the following data and show the results.

Available = (2 1 0 0)

2 0 01 0 01
Request={1 0 1 0 Allocation =| 2 0

1
01
2100 D ¥+ 2 '0

Review QQuestions

7.1 What requirements is memory management intended to satisfy?

7.2 Why is the capability to relocate processes desirable?

7.3 Why is it not possible to enforce memaory protection at compile time?

7.4 What are some reasons to allow two or more processes to all have access to a particular
region of memory?

7.5 In a fixed-partitioning scheme, what are the advantages of using unequal-size partitions?

7.6 What is the difference between internal and external fragmentation?

7.7 What are the distinctions among logical, relative, and physical addresses?

7.8 What is the difference between a page and a frame?

7.9 What is the difference between a page and a segment?

Problems

7.1 In Section 2.3, we listed five objectives of memory management, and in Section 7.1,
we listed five requirements. Argue that each list encompasses all of the concerns
addressed in the other.

7.2 Consider a fixed partitioning scheme with equal-size partitions of 2'® bytes and a total
main memory size of 2°* bytes. A process table is maintained that includes a pointer to
a partition for each resident process. How many bits are required for the pointer?

7.3 Consider a dynamic partitioning scheme. Show that, on average. the memory contains
half as many holes as segments.

7.4 To implement the various placement algorithms discussed for dvnamic partitioning
(Section 7.2), a list of the free blocks of memory must be kept. For each of the three
methods discussed (best-fit, first-fit, next-fit), what is the average length of the
search?

7.5 Another placement algorithm for dynamic partitioning is referred to as worst-fit. In

this case, the largest free block of memory is used for bringing in a process. Discuss
the pros and cons of this method compared to first-, next-, and best-fit. What is the
average length of the search for worst-fit?

.1

712

T

.7

7.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 337

A dynamic partitioning scheme is being used, and the following is the memory con-
figuration at a given point in time:

40M HOM

20M
20M

gmm mmgmmmmm
=1

The shaded areas are allocated blocks; the white areas are free blocks. The next three

memory requests are for 400, 20M, and 10M. Indicate the starting address for each of

the three blocks using the following placement algorithms:

a. First-fit

b. Best-fit

¢ MNext-fit. Assume the most recently added block is at the beginning of memory.

d. Worst-fit

A 1-Mbyte block of memory is allocated using the buddy system.

a. Show the results of the following sequence in a figure similar to Figure 7.6:
Request 70; Request 35; Request 80; Return A; Request 60; Return B; Return

D; Return C.
b. Show the binary tree representation following Return B.

7.8 Consider a buddy system in which a particular block under the current allocation has

an address of 011011110000
a. Ifthe block is of size 4, what is the binary address of its buddy?
. If the block is of size 16, what is the binary address of its buddy?

7.9 Let buddy ,(x) = address of the buddy of the block of size 2* whose address is x.

Write a general expression for buddy @(x).
7.10 The Fibonacci sequence is defined as follows:

F.ﬂ.={:|, F|_=l, FJ'|'+2=FII—|+FH1 n=0

a. Could this sequence be used to establish a buddy system?

b, What would be the advantage of this system over the binary buddy system de-

scribed in this chapter?

e

During the course of execution of a program, the processor will increment the con-

tents of the instruction register (program counter) by one word after each instruction

fetch, but will alter the contents of that register if it encounters a branch or call
instruction that causes execution to continue elsewhere in the program. Now consider

Figure 7.8. There are two alternatives with respect to instruction addresses:

* Maintain a relative address in the instruction register and do the dynamic address
translation using the instruction register as input. When a suceessful branch or call
is encountered, the relative address generated by that branch or call is loaded into
the instruction register.

* Maintain an absolute address in the instruction register. When a successful branch
or call is encountered, dynamic address translation is employed, with the results
stored in the instruction register.

Which approach is preferable?

Consider a simple paging system with the following parameters: 2* bytes of physical
memory: page size of 2'" bytes: 2'* pages of logical address space.

a. How many bits are in a logical address?

How many bytes in a frame?

How many bits in the physical address specify the frame?

How many entries in the page table?

How many bits in each page table entry? Assume each page table entry contains a
valid/invalid bit.

RS
& et 7

398

B.6

B.7

CHAPTER 8§ / VIRTUAL MEMORY

page into each page frame, the time of last access to the page in each page frame, the
virtual page number in each page frame, and the referenced (R) and modified (M)
bits for each page frame are as shown (the times are in clock ticks from the process
start at time 0 to the event — not the number of ticks since the event to the present).

Virtual page | Page frame Time Time R bit M hit
number loaded referenced
2 0 60 161 0 1
1 1 130 160 1 0
0 2 26 162 1 0
3 3 20 163 1 1

A page fault to virtual page 4 has oceurred at time 164. Which page frame will have its
contents replaced for each of the following memory management policies? Explain

why in each case.

FIFO (first-in-first-out)
LR (least recently used)
Clock

Optimal (Use the following reference string.)

FEROFE

the following virtual page reference string:

4,0,0,0,2,4,2,1,0.3,2

How many page faults would oecur if the working set policy with LRU were used
with a window size of 4 instead of a fixed allocation? Show clearly when each page

fault would occur.

A process references five pages, A, B, C, D, and E, in the following order:
ABCDAB EABCDE

Assume that the replacement algorithm is first-in-first-out and find the number of
page transfers during this sequence of references starting with an empty main mem-
ory with three page frames. Repeat for four page frames.

A process contains eight virtual pages on disk and is assigned a fixed allocation of
four page frames in main memory. The following page trace occurs:

1,0,2,2,1,7.6,7,0,1,2,0,3,0,4,5,1,5,2,4,5,6,7,6,7,2,4,2,7,3,3,2.3

a. Show the successive pages residing in the four frames using the LRU replacement
policy. Compute the hit ratio in main memory. Assume that the frames are initially
empty.

h. Repeat part (a) for the FIFO replacement policy.

c. Compare the two hit ratios and comment on the effectiveness of using FIFO to
approximate LRL with respect to this particular trace.

In the YAX, user page tables are located at virtual addresses in the system space.

What is the advantage of having user page tables in virtual rather than main memory?

What is the disadvantage?

Given the aforementioned state of memory just before the page fault, consider

Review Questions

12.1
122
123
124
12.5
12.6

12.7
12.8
129

12.10
12.11

What is the difference between a field and a record?

What is the difference between a file and a database?

What is a file management system”

What criteria are important in choosing a file organization?
List and briefly define five file organizations.

Why is the average search time to find a record in a file less for an indexed sequential
file than for a sequential file?

What are typical operations that may be performed on a directory?

What is the relationship between a pathname and a working directory?

What are typical access rights that may be granted or denied to a particular user for
a particular file?

List and briefly define three blocking methods.

List and briefly define three file allocation methods.

Three processes arrive at time zero with CPU bursts of 16, 20 and 10 milliseconds. If
the scheduler has prior knowledge about the length of the CPU bursts, what will be
the minimum achievable average waiting time for these three processes in a non-
preemptive scheduler (rounded to nearest integer)?

An operating system needs to manage a set of tasks with mixed priority levels. There
are three types of tasks:

High-priority real-time tasks that need immediate execution (e.g., hardware
interrupts).

Medium-priority CPU-bound tasks that are computationally intensive but not
urgent (e.g., data analysis).

Low-priority 1/0-bound tasks that spend most of their time waiting for 1/O
operations (e.g., file transfers).

IProcess||Priority|Burst Time (ms)|/Arrival Time (ms)|
P1__|High |15 o |
P2 |Low |20 |5 |
P3_ |[Medium]|[25 10 |
Pa__JHigh |5 |12 |
P5 |Low |30 120 |

Apply the priority-based preemptive scheduling algorithm to these tasks and determine
the execution order. Calculate the average waiting time and turnaround time for the system.

Process Id Arrival time Burst time Priority

P1 0 8 3
P2 1 4 3
P3 2 5 4
P4 3 3 4
P5 4 1 5

If the CPU scheduling policy is priority preemptive, calculate the average waiting time
and average turn around time. (Higher number represents higher priority)

4.

If the CPU scheduling policy is SJF preemptive, in the following system, calculate the
average waiting time and average turn around time.

Process Id Arrival time Burst time

P1 1 3
P2 2 5
P3 4 2
P4 0 4
PS 2 2

5. Consider the following table of arrival time and burst time for four processes P1, P2,
P3 and P4.

Process Id Arrival time Burst time

P1 1 2
P2 2 4
P3 3 6
P4 4 8

Calculate the average waiting time and average turn around time, if the system follows
preemptive Longest Remaining Time First CPU scheduling algorithm.

6. A multilevel queue scheduling system is used in an OS with three different queues:

=

System Queue: Highest priority, time quantum of 10ms.

Interactive Queue: Medium priority, time quantum of 20ms.

3. Background Queue: Lowest priority, no specific time quantum (First-Come, First-
Served).

N

The operating system needs to manage the following tasks:

Process|Queue Type|Burst Time (ms)|Arrival Time (ms)|
P1 |[System |25 0 |
P2 |interactive |40 |5 |
P3 |Background |50 10 |
P4 |lsystem |10 15 |
P5 |Interactive |20 120 |

Simulate the execution of these tasks using a multilevel queue scheduling algorithm with
the given time quantum for each queue. Provide a Gantt chart of the execution process, and
calculate the total CPU idle time.

1. Consider a system with the following processes and resources:

. Processes: P1, P2, P3
. Resources: R1 (2 instances), R2 (1 instance), R3 (1 instance)

The current resource allocation status is as follows:

. P1 is holding 1 instance of R1 and requesting 1 instance of R2.
. P2 is holding 1 instance of R2 and requesting 1 instance of R3.
. P3 is holding 1 instance of R3 and requesting 1 instance of R1.

Draw the Resource Allocation Graph (RAG) for this system. Based on the graph,
determine if there is a deadlock. If deadlock exists, identify the processes involved.

2. A system with three processes (P1, P2, P3) and three resources (R1, R2, R3) isin a
potential deadlock situation. The current resource allocation and request state is as
follows:

. P1 holds R1 and requests R2.
. P2 holds R2 and requests R3.
. P3 holds R3 and requests R1.

(@) Draw the current Resource Allocation Graph (RAG) for this system.
(b) Modify the graph by introducing one possible change to the allocation or request
of resources such that the system avoids deadlock. Explain your reasoning behind the
modification.

3. Asystem consists of four processes (P1, P2, P3, P4) and three resources (R1, R2, R3),
each having only one instance. The following allocation and request table is given:

IProcess|Currently Held Resources||Requested Resources|
P1 |R1 IR2 |
P2 |R2 IR3 |
P3 |None IR3 |
P4 |R3 IR1 |

The system has detected a deadlock involving some or all of these processes.

(a) Analyze the system's state by identifying which processes are in a deadlock.
(b) Propose a suitable deadlock recovery strategy (e.g., process termination or
resource preemption).

4. A system has detected a deadlock involving three processes (P1, P2, P3) and two
resources (R1, R2). The following information is available:

e P1holds R1 and is requesting R2.
e P2 holds R2 and is requesting R1.
e P3iswaiting for either R1 or R2 to be released.

The system administrator needs to terminate one process to resolve the deadlock.

(a) Analyze which process should be terminated to resolve the deadlock. Consider the
resources each process holds and requests.
(b) Explain the reasoning behind your decision.

. Consider a system with five processes (P1, P2, P3, P4, P5) and three resource types
(R1, R2, R3). The following tables show the allocation, maximum, and available
resources:

IProcess||Allocation (R1, R2, R3)|[Maximum (R1, R2, R3)|
PL 1,00 3,2,2 |
P2 2,11 53,2 |
P3 |3,1,1 4,2,2 |
P4 Jo,2,1 3,32 |
Ps 1,11 4,33 |

Available resources: R1=1,R2=1,R3=2
Apply the Banker’s Algorithm to determine whether the system is in a safe state.
Define deadlock in the context of operating systems. Describe the four necessary

conditions for a deadlock to occur, and explain how deadlock detection differs from
deadlock prevention.

1. Consider a system with 1000 KB of total memory. The following processes arrive and
request memory in the given order:

IProcess|Memory Requested (KB)|
P1 200 |
P2 350 |
P3 100 |
P4 400 |
The system uses the first-fit allocation algorithm.

(@ Apply the first-fit algorithm to allocate memory for the processes.
(b) Calculate how much memory is left after all processes have been allocated, and
identify any fragmentation.

2. A system has the following memory partitions available:

Partition|Size (KB)|
P1 1300 |
P2 500 |
P3 200 |
P4 l600 |

Four processes arrive, each requesting memory:

IProcess|Memory Requested (KB)|
P1 350 |
P2 200 |
P3 400 |
P4 100 |

(@ Use the best-fit algorithm to allocate memory to the processes.
(b) After all processes are allocated, calculate the amount of external fragmentation.
How does the best-fit algorithm affect fragmentation compared to other allocation
strategies?

3. Consider a system that uses paging for memory management. The page size is 4 KB.
A process has the following logical address:

. Logical address: 15,342

The system has the following page table:

4.

5.

\Page NumberHFrame Number\
0 I3 |
fl Ir |
2 2 |
3 4 |

(@) Calculate the page number and offset from the given logical address.
(b) Use the page table to determine the corresponding physical address.

In a system using segmentation, the segment table for a process is as follows:

ISegment Number|[Base Address||Limit]
0 1000 500 |
1 14000 I2000 |
2 7000 200 |

The process generates the following logical address for a memory access:

. Segment Number = 1, Offset = 600

Translate the given logical address into a physical address using the segment table.

A process has been assigned a relocation register value of 5000 and a limit register
value of 3000. The process attempts to access the following logical addresses:

1. Logical address 1500
2. Logical address 3200

(@) For each logical address, determine the physical address by applying the
relocation register.
(b) Check if each access is valid by comparing the logical address with the limit
register. If the access is invalid, explain why.

Explain the function of a Translation Lookaside Buffer (TLB) in a paging system.
How does it improve the performance of address translation? Discuss the implications
of TLB size on hit rate and overall system performance.

. A company is considering different RAID (Redundant Array of Independent Disks)
levels for their data storage system, particularly RAID 0, RAID 1, RAID 5, and RAID
6.

Compare the performance, data redundancy, and fault tolerance of each RAID level.
Provide specific advantages and disadvantages for each configuration in the context
of high availability and data recovery.

In a disk management system, fragmentation can lead to inefficient storage utilization
and performance degradation.

(@) Analyze the causes of fragmentation (both internal and external) in disk
management systems.
(b) Evaluate the impact of fragmentation on disk performance and suggest strategies
to minimize fragmentation, including defragmentation techniques.

. A hard disk drive has 4 platters, with each platter containing 1000 tracks. Each track
has 50 sectors, and each sector can store 512 bytes of data.
@ Calculate the total storage capacity of the disk.
(b) If a file requires 2048 bytes of storage, how many sectors and tracks will it occupy?

Describe the physical structure of a hard disk drive (HDD). Include details on
components such as platters, tracks, sectors, and read/write heads. How do these
components work together to store and retrieve data?

Explain the concept of demand paging in virtual memory systems. How does it differ
from pre-paging? Discuss the benefits and drawbacks of demand paging in terms of
memory utilization and system performance.

Define thrashing in the context of virtual memory management. Describe the
conditions under which thrashing occurs and its impact on system performance.
(a) Provide a scenario illustrating thrashing with specific reference to page fault rates.
(b) Discuss strategies that can be implemented to reduce thrashing in a system.

Compare and contrast two common page replacement algorithms: Least Recently
Used (LRU), and Optimal Page Replacement.
Consider a reference string of page requests: [1, 2, 3,4, 1, 2,5, 1, 2, 3, 4, 5] with 3
page frames. Calculate the number of page faults for each algorithm.

Discuss how the size of page frames affects the performance of a virtual memory
system.

Analyze the trade-offs involved in choosing larger versus smaller page sizes,
particularly regarding page fault rates and internal fragmentation.

