
Paper Name: Operating Systems Paper Code: PCCCS503

1 | P a g e Study Material

 Paper Name with code: Operating Systems (PCCCS503)

Institute of Engineering & Management, Kolkata
University of Engineering & Management, Kolkata
University of Engineering & Management, Jaipur

Paper Name: Operating Systems Paper Code: PCCCS503

2 | P a g e Study Material

Paper name: Operating System
Code: PCCCS503
Semester: 5
Contacts: 3L
Credits: 3

Detailed Syllabus
Pre-requisite: Basic knowledge of Data Structures and Computer Organization.

Module 1: Introduction (10L)

Generations & Concept of Operating Systems, Types of Operating Systems, OS Services,

System Calls, Structure of an OS - Layered, Monolithic, Microkernel Operating Systems,

Concept of Virtual Machine. Case study on UNIX and WINDOWS Operating System.

Processes: Definition, Process Relationship, Different states of a Process, Process State

Transitions, Process Control Block (PCB), Context switching.

Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of

multithreads.

Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling

criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time;

Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR, Priority.

Multiprocessor scheduling.

Module 2: Inter-Process Communication (10L)

Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation,

Peterson’s Solution, The Producer Consumer Problem, Semaphores, Event Counters,

Monitors, Message Passing, Classical IPC Problems: Reader’s & Writer

Problem, Producer Consumer Problem, Dinning Philosopher Problem.

Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock

Prevention, Deadlock Avoidance: Banker’s algorithm, Deadlock detection and Recovery.

Paper Name: Operating Systems Paper Code: PCCCS503

3 | P a g e Study Material

Module 3: Memory Management (10L)

Basic concept, Logical and Physical address map, Memory allocation:

Contiguous Memory allocation– Fixed and variable partition– Internal and External

fragmentation and Compaction; Paging: Principle of operation –Page allocation Disadvantages

of paging.

Virtual Memory: Basics of Virtual Memory –Locality of reference, Page fault, Working Set,

Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First

Out (FIFO), Second Chance (SC), Not Recently used (NRU) and Least Recently used (LRU).

Module 4: I/O Hardware, File and Disk Management (10L)

I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O

Software: Goals of Interrupt handlers, Device drivers, Device independent I/O software

File Management: Concept of File, Access methods, File types, File operation, Directory

structure, File System structure, Allocation methods (contiguous, linked, indexed), Free space

management (bit vector, linked list, grouping), directory implementation (linear list, hash

table), efficiency and performance.

Disk Management: Disk structure, Disk scheduling: FCFS, SSTF, SCAN, C SCAN, Disk

reliability, Disk formatting, Boot-block, Bad blocks

COURSE OUTCOMES:

 CO 1: Students will be able to understand the different services provided by Operating System
and different scheduling algorithms at different level.
CO 2: Students will be able to learn synchronization techniques to avoid
deadlock.
CO 3: Students will acquire a knowledge about different memory management techniques like
paging, segmentation and demand paging etc.
CO 4: students will have a comprehensive understanding of I/O hardware and software principles,
secondary-storage structures, file management, and disk management.

TEXT BOOK:

1. Operating System Concepts Essentials, 9th Edition by Abraham Silberschatz, Peter Galvin,
Greg Gagne, Wiley Asia Student Edition.

Paper Name: Operating Systems Paper Code: PCCCS503

4 | P a g e Study Material

2. Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice
Hall of India.

REFERENCE BOOKS:

1. Operating System Concepts, Ekta Walia, Khanna Publishing House (AICTE Recommended
Textbook – 2018).

2. Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, Irwin
Publishing.

ONLINE RESOURCES:

1. https://online.stanford.edu/courses/cs111-operating-systems-principles)
2. https://onlinecourses.nptel.ac.in/noc20_cs04/preview
3. https://www.coursera.org/specializations/codio-introduction-operating-systems
4. https://www.coursera.org/learn/akamai-operating-systems#modules

Paper Name: Operating Systems Paper Code: PCCCS503

5 | P a g e Study Material

MODULE 1

Definition of Operating System: An operating system is system software that manages
computer hardware and software resources and provides common services for computer
programs.

Types of Operating Systems:

1. Batch Operating System –

This type of operating system do not interact with the computer directly. There is an operator
which takes similar jobs having same requirement and group them into batches. It is the
responsibility of operator to sort the jobs with similar needs.

2. Time-Sharing Operating Systems –

Each task has given some time to execute, so that all the tasks work smoothly. Each user gets
time of CPU as they use single system. These systems are also known as Multitasking Systems.
The task can be from single user or from different users also. The time that each task gets to
execute is called quantum. After this time interval is over OS switches over to next task.

3. Distributed Operating System –

These types of operating system is a recent advancement in the world of computer technology
and are being widely accepted all-over the world and, that too, with a great pace. Various
autonomous interconnected computers communicate each other using a shared communication
network. Independent systems possess their own memory unit and CPU. These are referred as
loosely coupled systems or distributed systems. These systems processors differ in sizes and
functions. The major benefit of working with these types of operating system is that it is always
possible that one user can access the files or software which are not actually present on his
system but on some other system connected within this network i.e., remote access is enabled
within the devices connected in that network.

4. Network Operating System –

These systems runs on a server and provides the capability to manage data, users, groups,
security, applications, and other networking functions. These type of operating systems allows
shared access of files, printers, security, applications, and other networking functions over a

Paper Name: Operating Systems Paper Code: PCCCS503

6 | P a g e Study Material

small private network. One more important aspect of Network Operating Systems is that all the
users are well aware of the underlying configuration, of all other users within the network, their
individual connections etc. and that’s why these computers are popularly known as tightly
coupled systems.

5. Real-Time Operating System –

These types of OSs serves the real-time systems. The time interval required to process and
respond to inputs is very small. This time interval is called response time.

Real-time systems are used when there are time requirements are very strict like missile
systems, air traffic control systems, robots etc.

Two types of Real-Time Operating System which are as follows:

 Hard Real-Time Systems:

These OSs are meant for the applications where time constraints are very strict and
even the shortest possible delay is not acceptable. These systems are built for saving
life like automatic parachutes or air bags which are required to be readily available in
case of any accident. Virtual memory is almost never found in these systems.

 Soft Real-Time Systems:

 These OSs are for applications where for time-constraint is less strict.

Operating Systems Components:

Paper Name: Operating Systems Paper Code: PCCCS503

7 | P a g e Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

8 | P a g e Study Material

Definition of Process:

 In computing, a process is the instance of a computer program that is being executed.

 A process is defined as an entity which represents the basic unit of work to be
 implemented in the system.

 Component of a Process

Stack
The process Stack contains the temporary data such as method/function parameters, return
address and local variables.

Heap
This is dynamically allocated memory to a process during its run time.

Text
This includes the current activity represented by the value of Program Counter and the
contents of the processor's registers.

Data
This section contains the global and static variables.

Paper Name: Operating Systems Paper Code: PCCCS503

9 | P a g e Study Material

Process Life Cycle

Start
This is the initial state when a process is first started/created.

Ready
The process is waiting to be assigned to a processor. Ready processes are waiting to have the
processor allocated to them by the operating system so that they can run. Process may come
into this state after Start state or while running it by but interrupted by the scheduler to assign
CPU to some other process.

Running
Once the process has been assigned to a processor by the OS scheduler, the process state is
set to running and the processor executes its instructions.

Waiting
Process moves into the waiting state if it needs to wait for a resource, such as waiting for user
input, or waiting for a file to become available.

Terminated or Exit
Once the process finishes its execution, or it is terminated by the operating system, it is
moved to the terminated state where it waits to be removed from main memory.

Paper Name: Operating Systems Paper Code: PCCCS503

10 | P a g e Study Material

Process Control Block (PCB)

A Process Control Block is a data structure maintained by the Operating System for every
process. The PCB is identified by an integer process ID (PID). A PCB keeps all the information
needed to keep track of a process as listed below in the table –

Process Scheduling:

The process scheduling is the activity of the process manager that handles the removal of the
running process from the CPU and the selection of another process on the basis of a particular
strategy.

Scheduling Queues

Job Queue- This queue keeps all the processes in the system.

Ready Queue- This queue keeps a set of all processes residing in main memory, ready and
waiting to execute. A new process is always put in this queue.

Device Queue- The processes which are blocked due to unavailability of an I/O device
constitute this queue.

Schedulers

Paper Name: Operating Systems Paper Code: PCCCS503

11 | P a g e Study Material

Schedulers are special system software which handle process scheduling in various ways. Their
main task is to select the jobs to be submitted into the system and to decide which process to
run.

Schedulers are of three types −

Long-Term Scheduler- It is also called a job scheduler. A long-term scheduler determines
which programs are admitted to the system for processing. It selects processes from the queue
and loads them into memory for execution.

Medium-Term Scheduler- Medium-term scheduling is a part of swapping. It removes the
processes from the memory. It reduces the degree of multiprogramming. The medium-term
scheduler is in-charge of handling the swapped out-processes.

Short-Term Scheduler- It is also called as CPU scheduler. CPU scheduler selects a process
among the processes that are ready to execute and allocates CPU to one of them.

Context Switching

A context switch is the mechanism to store and restore the state or context of a process in
Process Control block so that a process execution can be resumed from the same point at a later
time.

First Come First Serve Scheduling

In this, the process that comes first will be executed first and next process starts only after
the previous gets fully executed.

Paper Name: Operating Systems Paper Code: PCCCS503

12 | P a g e Study Material

Waiting time for each process:
Process Wait Time : Service Time - Arrival Time

P0 0 - 0 = 0

P1 5 - 1 = 4

P2 8 - 2 = 6

P3 16 - 3 = 13

Turn around time for each process:
Process

Turn around Time

P0 5 – 0=5

P1 8 – 1=7

P2 16 – 2=14

P3 22 – 3=19

Round Robin Scheduling

Round Robin is the preemptive process scheduling algorithm.

Each process is provided a fix time to execute, it is called a quantum.

Once a process is executed for a given time period, it is preempted and other process
executes for a given time period.

Context switching is used to save states of preempted processes.

Paper Name: Operating Systems Paper Code: PCCCS503

13 | P a g e Study Material

Process Wait Time : Service Time - Arrival Time

P0 (0 - 0) + (12 - 3) = 9

P1 (3 - 1) = 2

P2 (6 - 2) + (14 - 9) + (20 - 17) = 12

P3 (9 - 3) + (17 - 12) = 11

Shortest Job First Scheduling: Shortest job first (SJF) or shortest job next, is a scheduling
policy that selects the waiting process with the smallest execution time to execute next. SJF is a
non- preemptive algorithm.

Example

PID Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Gantt Chart

 P1 P2 P4 P3

0 8 12 17 26

Paper Name: Operating Systems Paper Code: PCCCS503

14 | P a g e Study Material

PID Waiting Time Turnaround Time

P1 0 - 0 =0 8 – 0 =8

P2 8 - 1 =7 12 – 1=11

P3 17 - 2=15 26- 2 = 24

P4 12 - 3=9 17 – 3 =14

Avg. Waiting Time= (0+7+15+9)/4= 7.75ms
Avg. Turnaround Time= (8+11+24+14)/4 = 14.25ms
Throughput= 4jobs/26ms= 0.15385jobs/ms
Shortest Remaining Time First Scheduling: This Algorithm is the preemptive version of SJF
scheduling. In SRTF, the execution of the process can be stopped after certain amount of time.
At the arrival of every process, the short term scheduler schedules the process with the least
remaining burst time among the list of available processes and the running process.

Example

PID Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Paper Name: Operating Systems Paper Code: PCCCS503

15 | P a g e Study Material

Gantt Chart

 P1 P2 P4 P1 P3

0 1 5 10 17 26

PID Waiting Time Turnaround Time

P1 0 + (10 – 1) =9 17 – 0 = 17

P2 1 - 1 = 0 5 – 1= 4

P3 17 - 2=15 26- 2 = 24

P4 5 – 3 = 2 10 – 3 = 7

Avg. Waiting Time= (9+0+15+2)/4= 6.5ms
Avg. Turnaround Time= (17+4+24+7)/4 = 13ms
Longest Remaining Time First Scheduling:This is a pre-emptive version of Longest Job First
(LJF) scheduling algorithm. In this scheduling algorithm, we find the process with maximum
remaining time and then process it. We check for the maximum remaining time after some
interval of time to check if another process having more Burst Time arrived up to that time.

Priority Scheduling: Each process is assigned a priority. Process with the highest priority is
to be executed first and so on. Processes with the same priority are executed on first come first
served basis. Priority can be decided based on memory requirements, time requirements or any
other resource requirement.

Priority Scheduling can be preemptive and non- preemptive.

Non- preemptive Priority Scheduling:

Example

Paper Name: Operating Systems Paper Code: PCCCS503

16 | P a g e Study Material

PID Arrival Time Burst Time Priority

P1 0 11 2

P2 5 28 0

P3 12 2 3

P4 2 10 1

P5 9 16 4

Gantt Chart
 P1 P2 P4 P3 P5

0 11 39 49 51 67

PID Waiting Time Turnaround Time

P1 0 – 0 = 0 11 – 0 = 11

P2 11 - 5 = 6 39 – 5= 34

P3 49 – 12 = 37 51- 12 = 39

P4 39 – 2 = 37 49 – 2 = 47

P5 51 – 9 = 42 67 – 9 = 58

Avg. Waiting Time= (0+6+37+37+42)/5= 24.4ms
Avg. Turnaround Time= (11+34+39+47+58)/5 = 37.8ms
Preemptive Priority Scheduling:

Example
PID Arrival Time Burst Time Priority

P1 0 11 2

Paper Name: Operating Systems Paper Code: PCCCS503

17 | P a g e Study Material

P2 5 28 0

P3 12 2 3

P4 2 10 1

P5 9 16 4

Gantt Chart

 P1 P4 P2 P4 P1 P3 P5

0 2 5 33 40 49 51 67

Thread: A thread is a path of execution within a process. A process can contain multiple
threads.

A thread is also known as lightweight process. The idea is to achieve parallelism by dividing a
process into multiple threads. For example, in a browser, multiple tabs can be different threads.
MS Word uses multiple threads: one thread to format the text, another thread to process inputs,
etc.

Process vs Thread?

The primary difference is that threads within the same process run in a shared memory space,
while processes run in separate memory spaces.
Threads are not independent of one another like processes are, and as a result threads share
with other threads their code section, data section, and OS resources (like open files and
signals). But, like process, a thread has its own program counter (PC), register set, and stack
space.

Advantages of Thread over Process

 1. Responsiveness: If the process is divided into multiple threads, if one thread completes its
 execution, then its output can be immediately returned.

2. Faster context switch: Context switch time between threads is lower compared to process
context switch. Process context switching requires more overhead from the CPU.

Paper Name: Operating Systems Paper Code: PCCCS503

18 | P a g e Study Material

3. Effective utilization of multiprocessor system: If we have multiple threads in a single
process, then we can schedule multiple threads on multiple processor. This will make process
execution faster.

4. Resource sharing: Resources like code, data, and files can be shared among all threads
within a process.
Note: stack and registers can’t be shared among the threads. Each thread has its own
stack and registers.

5. Communication: Communication between multiple threads is easier, as the threads shares
common address space. while in process we have to follow some specific communication
technique for communication between two process.

6. Enhanced throughput of the system: If a process is divided into multiple threads, and
each thread function is considered as one job, then the number of jobs completed per unit of
time is increased, thus increasing the throughput of the system.

Types of Threads: There are two types of threads.
 User Level Thread
 Kernel Level Thread

Paper Name: Operating Systems Paper Code: PCCCS503

19 | P a g e Study Material

Q.No. Question Blooms
Level

CO Marks

1 There are three jobs running in a multi-programming environment with the
following requirements:
Job1: Requires disk after every 2 min (device service time including wait and
access= 2 min). Total processing time= 6 min.
Job2: Requires printer after every 5 min (device service time including wait and
access= 2 min). Total processing time= 7 min.
Job3: Requires disk after every 3 min (device service time including wait and
access= 2min). Total processing time= 5 min.
Prepare a timing chart showing the CPU and I/O activities of the jobs. Compute
the total time for execution using mono-programming and multi-programming
and then compare the results.

4 1 10

2 What event handler would be executed in the following cases:

a. The running process has finished its execution before completion of its time
slice.
b. The running process tries to access memory location that is not allowed to
access.
c. If there is failure in reading or writing an I/O device.
d. A process is ready to execute but there is no space in the main memory.
e. A periodic process is idle waiting for its next time slot to be executed.

4 1 10

3 Processes go through the following states in their lifetime.

Consider the following events and answer the questions that follow. Assume there
are 5 processes, all either in the read or running states initially. Assume the
processes are using a single processor.
• At time 5: P1 executes a command to read from disk 3.
• At time 15: P3’s time slice ends.
• At time 18: P4 executes a command to write to disk 3.
• At time 20: P2 executes a command to read from disk 2.
• At time 24: P3 executes a command to join with P5.
• At time 33: An interrupt occurs indicating that P2’s read is complete.
• At time 36: An interrupt occurs indicating that P1’s read is complete.
• At time 38: P5 terminates.
• At time 48: An interrupt occurs indicating that P4’s write is complete.
For time 22, 37 and 47, identify which state each process is in. If it is waiting,
indicate what it is waiting for.

6 1 10

4 Consider the 3 processes, P1, P2 and P3 shown in the table.
Process Arrival time Time Units Required
P1 0 5

4 1 10

Paper Name: Operating Systems Paper Code: PCCCS503

20 | P a g e Study Material

P2 1 7
P3 3 4
What will be the completion order of the 3 processes under the policies FCFS and
RR2 (round robin scheduling with CPU quantum of 2 time units)?

5 Three processes A, B and C each execute a loop of 100 iterations. In each
iteration of the loop, a process performs a single computation that requires tc CPU
milliseconds and then initiates a single I/O operation that lasts for tio
milliseconds. It is assumed that the computer where the processes execute has
sufficient number of I/O devices and the OS of the computer assigns different I/O
devices to each process. Also, the scheduling overhead of the OS is negligible.
The processes have the following characteristics:

Process id tc tio
A 100ms 500 ms
B 350 ms 500 ms
C 200 ms 500 ms
The processes A, B, and C are started at times 0, 5 and 10 milliseconds
respectively, in a pure time sharing system (round robin scheduling) that uses a
time slice of 50 milliseconds. What is the time in milliseconds at which process C
would complete its first I/O operation?

6 1 10

6 Consider three CPU-intensive processes, which require 10, 20 and 30 time units
and arrive at times 0, 2 and 6, respectively. How many context switches are
needed if the operating system implements a shortest remaining time first
scheduling algorithm? Do not count the context switches at time zero and at the
end.

5 1 10

7 Consider three processes, all arriving at time zero, with total execution time of 10,
20 and 30 units, respectively. Each process spends the first 20% of execution time
doing I/O, the next 70% of time doing computation, and the last 10% of time
doing I/O again. The operating system uses a shortest remaining compute time
first scheduling algorithm and schedules a new process either when the running
process gets blocked on I/O or when the running process finishes its compute
burst. Assume that all I/O operations can be overlapped as much as possible. For
what percentage of time does the CPU remain idle?

6 1 10

8 Consider the following table of arrival time and burst time for three processes P0,
P1 and P2.
Process Arrival time Burst Time
P0 0 ms 9 ms
P1 1 ms 4 ms
P2 2 ms 9 ms
The pre-emptive shortest job first scheduling algorithm is used. Scheduling is
carried out only at arrival or completion of processes. What is the average waiting
time for the three processes?

4 1 10

9 Assume every process requires 3 seconds of service time in a system with single
processor. If new processes are arriving at the rate of 10 processes per minute,
then estimate the fraction of time CPU is busy in system?

4 1 10

10 Under what circumstances does a multithreaded solution using multiple kernel
threads provide better performance than a single- threaded solution on a single-
processor system?
Describe the actions taken by a thread library to context switch between
user- level threads.

5 1 10

Paper Name: Operating Systems Paper Code: PCCCS503

21 | P a g e Study Material

Paper Name: Operating Systems Paper Code: PCCCS503

22 | P a g e Study Material

MODULE 2

On the basis of synchronization, processes are categorized as one of the following two types:

 Independent Process : Execution of one process does not affects the execution of other
processes.

 Cooperative Process : Execution of one process affects the execution of other
processes.

Process synchronization problem arises in the case of Cooperative process also because
resources are shared in Cooperative processes.

Critical Section Problem
Critical section is a code segment that can be accessed by only one process at a time. Critical
section contains shared variables which need to be synchronized to maintain consistency of
data variables.

Any solution to the critical section problem must satisfy three requirements:

 Mutual Exclusion : If a process is executing in its critical section, then no other process
is allowed to execute in the critical section.

 Progress : If no process is in the critical section, then no other process from outside can
block it from entering the critical section.

 Bounded Waiting : A bound must exist on the number of times that other processes are
allowed to enter their critical sections after a process has made a request to enter its
critical section and before that request is granted.

Paper Name: Operating Systems Paper Code: PCCCS503

23 | P a g e Study Material

Peterson’s Solution

Peterson’s Solution is a classical software based solution to the critical section problem.

In Peterson’s solution, we have two shared variables:

boolean flag[i] :Initialized to FALSE, initially no one is interested in entering the critical
section

int turn : The process whose turn is to enter the critical section.

Semaphores

A Semaphore is an integer variable, which can be accessed only through two operations wait
() and signal ().
There are two types of semaphores: Binary Semaphores and Counting Semaphores

Binary Semaphores: They can only be either 0 or 1. They are also known as mutex locks, as
the locks can provide mutual exclusion. All the processes can share the same mutex
semaphore that is initialized to 1. Then, a process has to wait until the lock becomes 0. Then,
the process can make the mutex semaphore 1 and start its critical section. When it completes
its critical section, it can reset the value of mutex semaphore to 0 and some other process can
enter its critical section.

Counting Semaphores: They can have any value and are not restricted over a certain domain.
They can be used to control access a resource that has a limitation on the number of
simultaneous accesses. The semaphore can be initialized to the number of instances of the
resource. Whenever a process wants to use that resource, it checks if the number of remaining

Paper Name: Operating Systems Paper Code: PCCCS503

24 | P a g e Study Material

instances is more than zero, i.e., the process has an instance available. Then, the process can
enter its critical section thereby decreasing the value of the counting semaphore by 1. After
the process is over with the use of the instance of the resource, it can leave the critical section
thereby adding 1 to the number of available instances of the resource

Paper Name: Operating Systems Paper Code: PCCCS503

25 | P a g e Study Material

Reader Writer problem

Consider a situation where we have a file shared between many people.

 If one of the people tries editing the file, no other person should be reading or writing at
the same time, otherwise changes will not be visible to him/her.

 However if some person is reading the file, then others may read it at the same time.
Precisely in OS we call this situation as the readers-writers problem
Problem parameters:

 One set of data is shared among a number of processes
 Once a writer is ready, it performs its write. Only one writer may write at a time
 If a process is writing, no other process can read it
 If at least one reader is reading, no other process can write
 Readers may not write and only read

Deadlock

Deadlock is a situation where a set of processes are blocked because each process is
holding a resource and waiting for another resource acquired by some other process.
Consider an example when two trains are coming toward each other on same track and
there is only one track, none of the trains can move once they are in front of each other.
Similar situation occurs in operating systems when there are two or more processes
hold some resources and wait for resources held by other(s). For example, in the below
diagram, Process 1 is holding Resource 1 and waiting for resource 2 which is acquired
by process 2, and process 2 is waiting for resource 1.

Deadlock can arise if following four conditions hold simultaneously (Necessary
Conditions)
Mutual Exclusion: One or more than one resource are non-sharable (Only one process

Paper Name: Operating Systems Paper Code: PCCCS503

26 | P a g e Study Material

can use at a time)
Hold and Wait: A process is holding at least one resource and waiting for resources.
No Preemption: A resource cannot be taken from a process unless the process releases
the resource.
Circular Wait: A set of processes are waiting for each other in circular form.

Methods for handling deadlock
There are three ways to handle deadlock
1) Deadlock prevention or avoidance: The idea is to not let the system into deadlock
state.
2) Deadlock detection and recovery: Let deadlock occur, then do preemption to handle
it once occurred.

DEADLOCK PREVENTION:

Eliminate Mutual Exclusion
It is not possible to dis-satisfy the mutual exclusion because some resources, such as the tap
drive and printer, are inherently non-shareable.

Eliminate Hold and wait
1. Allocate all required resources to the process before start of its execution, this way hold
and wait condition is eliminated but it will lead to low device utilization. for example, if a
process requires printer at a later time and we have allocated printer before the start of its
execution printer will remained blocked till it has completed its execution.
2. Process will make new request for resources after releasing the current set of resources.
This solution may lead to starvation.

Paper Name: Operating Systems Paper Code: PCCCS503

27 | P a g e Study Material

Eliminate No Preemption
Preempt resources from process when resources required by other high priority process.

Eliminate Circular Wait
Each resource will be assigned with a numerical number. A process can request for the
resources only in increasing order of numbering.
For Example, if P1 process is allocated R5 resources, now next time if P1 ask for R4, R3
lesser than R5 such request will not be granted, only request for resources more than R5 will
be granted.

Deadlock Avoidance
Deadlock avoidance can be done with Banker’s Algorithm.

Banker’s Algorithm
Bankers’s Algorithm is resource allocation and deadlock avoidance algorithm which test all
the request made by processes for resources, it check for safe state, if after granting request
system remains in the safe state it allows the request and if there is no safe state it don’t allow
the request made by the process.
Inputs to Banker’s Algorithm
1. Max need of resources by each process.
2. Currently allocated resources by each process.
3. Max free available resources in the system.
Request will only be granted under below condition.
1. If request made by process is less than equal to max need to that process.
2. If request made by process is less than equal to freely available resource in the system.

Paper Name: Operating Systems Paper Code: PCCCS503

28 | P a g e Study Material

Q.No. Question Blooms
Level

CO Marks

1

Here, B is a shared variable with initial value 2.
How many values B can have? And what are the values?

4 2 10

2 A shared variable x, initialized to zero, is operated on by four concurrent
processes W, X, Y, Z as follows. Each of the processes W and X reads x from
memory, increments by one, stores it to memory and then terminates. Each of the
processes Y and Z reads x from memory, decrements by two, stores it to memory,
and then terminates. Each process before reading x invokes the P operation (i.e.
wait) on a counting semaphore S and invokes the V operation (i.e. signal) on the
semaphore S after storing x to memory. Semaphore S is initialized to two. What is
the maximum possible value of x after all processes complete execution?

5 2 10

3 Does presence of cycle in a resource allocation graph necessarily creates
deadlock. Explain.

6 2 10

4 Prove that deadlock prevention mechanism actually to prevent deadlock. 5 2 10
5 Consider the following snapshot of a system. There are no outstanding unsatisfied

requests for resources. Check whether the system is in deadlock.

 Current allocation Maximum demand Available

process R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

P1 0 0 1 2 0 0 1 2 1 5 2 0

P2 2 0 0 0 2 7 5 0

P3 0 0 3 4 6 6 5 6

P4 2 3 5 4 4 3 5 6

P5 0 3 3 2 0 6 5 2

4 2 10

6 Consider method used by process P1 and P2 for accessing critical section. The
initial values of shared Boolean variables S1 and S2 are randomly selected.
P1() P2()
{ {
 While (S1==S2); While(S1!=S2);
 critical section critical section
 S1=S2; S1=not (S2);
Which of the following is true? Give explanation.
a. Mutual exclusion + Progress
b. Mutual exclusion only
c. Progress only
d. None

5 2 10

Paper Name: Operating Systems Paper Code: PCCCS503

29 | P a g e Study Material

7 Consider method used by process P1 and P2 for accessing critical section.
P1() P2()
{ {
 While (T) While(T)
 var P=T ; var Q=T
 while(var Q==T); while(var P==T);
 critical section critical section
 var P=F; var Q=F;
} }
Which of the following is true? Give explanation.
a. No Mutual exclusion + No Deadlock
b. Mutual exclusion only
c. Deadlock only
d. Mutual exclusion + Deadlock

5 2 10

8 A counting semaphore S is initialized to 10. Then, 6 P(Wait) operations and 4
V(Signal) operations are performed on S. What is the final value of S? Show the
working.

5 2 5

9 “If there is a cycle in the resource allocation graph, it may or may not be in
deadlock state“. Comment on this statement with a suitable example.

5 2 10

Paper Name: Operating Systems Paper Code: PCCCS503

30 | P a g e Study Material

MODULE 3

Memory Management
In a multiprogramming computer, the Operating System resides in a part of memory, and the
rest is used by multiple processes. The task of subdividing the memory among different
processes is called Memory Management. Memory management is a method in the operating
system to manage operations between main memory and disk during process execution. The
main aim of memory management is to achieve efficient utilization of memory.
Why Memory Management is Required?
Allocate and de-allocate memory before and after process execution.
To keep track of used memory space by processes.
To minimize fragmentation issues.
To proper utilization of main memory.
To maintain data integrity while executing of process.
Logical and Physical Address Space
Logical Address Space: An address generated by the CPU is known as a “Logical Address”.
It is also known as a Virtual address. Logical address space can be defined as the size of the
process. A logical address can be changed.
Physical Address Space: An address seen by the memory unit (i.e the one loaded into the
memory address register of the memory) is commonly known as a “Physical Address”. A
Physical address is also known as a Real address. The set of all physical addresses
corresponding to these logical addresses is known as Physical address space. A physical
address is computed by MMU. The run-time mapping from virtual to physical addresses is
done by a hardware device Memory Management Unit(MMU). The physical address always
remains constant.
Static and Dynamic Loading
Loading a process into the main memory is done by a loader. There are two different types of
loading :

Static Loading: Static Loading is basically loading the entire program into a fixed address. It
requires more memory space.
Dynamic Loading: The entire program and all data of a process must be in physical memory
for the process to execute. So, the size of a process is limited to the size of physical memory.
To gain proper memory utilization, dynamic loading is used. In dynamic loading, a routine is
not loaded until it is called. All routines are residing on disk in a relocatable load format. One
of the advantages of dynamic loading is that the unused routine is never loaded. This loading
is useful when a large amount of code is needed to handle it efficiently.
Static and Dynamic Linking

Paper Name: Operating Systems Paper Code: PCCCS503

31 | P a g e Study Material

To perform a linking task a linker is used. A linker is a program that takes one or more object
files generated by a compiler and combines them into a single executable file.
Static Linking: In static linking, the linker combines all necessary program modules into a
single executable program. So there is no runtime dependency. Some operating systems
support only static linking, in which system language libraries are treated like any other
object module.
Dynamic Linking: The basic concept of dynamic linking is similar to dynamic loading. In
dynamic linking, “Stub” is included for each appropriate library routine reference. A stub is a
small piece of code. When the stub is executed, it checks whether the needed routine is
already in memory or not. If not available then the program loads the routine into memory.
Swapping
When a process is executed it must have resided in memory. Swapping is a process of
swapping a process temporarily into a secondary memory from the main memory, which is
fast compared to secondary memory. A swapping allows more processes to be run and can be
fit into memory at one time. The main part of swapping is transferred time and the total time
is directly proportional to the amount of memory swapped. Swapping is also known as roll-
out, or roll because if a higher priority process arrives and wants service, the memory
manager can swap out the lower priority process and then load and execute the higher priority
process. After finishing higher priority work, the lower priority process swapped back in
memory and continued to the execution process.

Contiguous Memory Allocation
The main memory should accommodate both the operating system and the different client
processes. Therefore, the allocation of memory becomes an important task in the operating
system. The memory is usually divided into two partitions: one for the resident operating
system and one for the user processes. We normally need several user processes to reside in
memory simultaneously. Therefore, we need to consider how to allocate available memory to
the processes that are in the input queue waiting to be brought into memory. In adjacent
memory allotment, each process is contained in a single contiguous segment of memory.

Paper Name: Operating Systems Paper Code: PCCCS503

32 | P a g e Study Material

Memory Allocation
To gain proper memory utilization, memory allocation must be allocated efficient manner.
One of the simplest methods for allocating memory is to divide memory into several fixed-
sized partitions and each partition contains exactly one process. Thus, the degree of
multiprogramming is obtained by the number of partitions.
Multiple partition allocation: In this method, a process is selected from the input queue and
loaded into the free partition. When the process terminates, the partition becomes available
for other processes.
Fixed partition allocation: In this method, the operating system maintains a table that
indicates which parts of memory are available and which are occupied by processes. Initially,
all memory is available for user processes and is considered one large block of available
memory. This available memory is known as a “Hole”. When the process arrives and needs
memory, we search for a hole that is large enough to store this process. If the requirement is
fulfilled then we allocate memory to process, otherwise keeping the rest available to satisfy
future requests. While allocating a memory sometimes dynamic storage allocation problems
occur, which concerns how to satisfy a request of size n from a list of free holes. There are
some solutions to this problem:
Fragmentation
Fragmentation is defined as when the process is loaded and removed after execution from
memory, it creates a small free hole. These holes can not be assigned to new processes
because holes are not combined or do not fulfill the memory requirement of the process. To
achieve a degree of multiprogramming, we must reduce the waste of memory or
fragmentation problems. In the operating systems two types of fragmentation:
Internal fragmentation: Internal fragmentation occurs when memory blocks are allocated to
the process more than their requested size. Due to this some unused space is left over and
creating an internal fragmentation problem.Example: Suppose there is a fixed partitioning
used for memory allocation and the different sizes of blocks 3MB, 6MB, and 7MB space in
memory. Now a new process p4 of size 2MB comes and demands a block of memory. It gets
a memory block of 3MB but 1MB block of memory is a waste, and it can not be allocated to
other processes too. This is called internal fragmentation.

Paper Name: Operating Systems Paper Code: PCCCS503

33 | P a g e Study Material

External fragmentation: In External Fragmentation, we have a free memory block, but we
can not assign it to a process because blocks are not contiguous. Example: Suppose (consider
the above example) three processes p1, p2, and p3 come with sizes 2MB, 4MB, and 7MB
respectively. Now they get memory blocks of size 3MB, 6MB, and 7MB allocated
respectively. After allocating the process p1 process and the p2 process left 1MB and 2MB.
Suppose a new process p4 comes and demands a 3MB block of memory, which is available,
but we can not assign it because free memory space is not contiguous. This is called external
fragmentation.
Paging
Paging is a memory management scheme that eliminates the need for a contiguous allocation
of physical memory. This scheme permits the physical address space of a process to be non-
contiguous.
Logical Address or Virtual Address (represented in bits): An address generated by the CPU.
Logical Address Space or Virtual Address Space (represented in words or bytes): The set of
all logical addresses generated by a program.
Physical Address (represented in bits): An address actually available on a memory unit.
Physical Address Space (represented in words or bytes): The set of all physical addresses
corresponding to the logical addresses.
Example:
If Logical Address = 31 bits, then Logical Address Space = 231 words = 2 G words (1 G =
230)
If Logical Address Space = 128 M words = 27 * 220 words, then Logical Address = log2 227
= 27 bits
If Physical Address = 22 bits, then Physical Address Space = 222 words = 4 M words (1 M =
220)
If Physical Address Space = 16 M words = 24 * 220 words, then Physical Address = log2 224
= 24 bits
The mapping from virtual to physical address is done by the memory management unit
(MMU) which is a hardware device and this mapping is known as the paging technique.
The Physical Address Space is conceptually divided into several fixed-size blocks, called
frames.
The Logical Address Space is also split into fixed-size blocks, called pages.
Page Size = Frame Size

Paper Name: Operating Systems Paper Code: PCCCS503

34 | P a g e Study Material

The address generated by the CPU is divided into:
Page Number(p): Number of bits required to represent the pages in Logical Address Space
or Page number
Page Offset(d): Number of bits required to represent a particular word in a page or page size
of Logical Address Space or word number of a page or page offset.
Physical Address is divided into:
Frame Number(f): Number of bits required to represent the frame of Physical Address
Space or Frame number frame
Frame Offset(d): Number of bits required to represent a particular word in a frame or frame
size of Physical Address Space or word number of a frame or frame offset.
The hardware implementation of the page table can be done by using dedicated registers. But
the usage of the register for the page table is satisfactory only if the page table is small. If the
page table contains a large number of entries then we can use TLB(translation Look-aside
buffer), a special, small, fast look-up hardware cache.
The TLB is an associative, high-speed memory.
Each entry in TLB consists of two parts: a tag and a value.
When this memory is used, then an item is compared with all tags simultaneously. If the item
is found, then the corresponding value is returned.

Paper Name: Operating Systems Paper Code: PCCCS503

35 | P a g e Study Material

Q.No. Question Blooms

Level
CO Marks

1 "Consider the requests from processes in given order 300K, 25K, 125K, and 50K.
Let there be two blocks of memory available of size 150K followed by a block
size 350K.
Which partition allocation schemes can satisfy the above requests? (NOTE : Here
we assumed a partition can be allocated to a process even if some other process
occupies a part of that partition.)

Show the working neatly with diagram. Justify your answer."

6 3 5

2 Consider an imaginary disk with 51 cylinders. A request comes in to read a block
on cylinder 11. While the seek to cylinder 11 is in progress, new requests come in
for cylinders 1, 36, 16, 34, 9 and 12 in that order. Starting from the current head
position, what is the total distance (in cylinders) that the disk arm moves, to satify
all the pending requests, for each of the following disk scheduling algorithms:
FCFS, SSTF, SCAN & LOOK?

5 3 10

3
i. Consider the reference string 6, 1, 1, 2, 0, 3, 4, 6, 0, 2, 1, 2, 1, 2, 0, 3, 2, 1, 2, 0
for a memory with three frames and calculate number of page faults and page hits
by using FIFO (First In First Out) Page replacement algorithm

ii. Consider the reference string 6, 1, 1, 2, 0, 3, 4, 6, 0, 2, 1, 2, 1, 2, 0, 3, 2, 1, 2, 0
for a memory with three frames and calculate number of page faults and page hits
by using LRU Least Recently Used) Page replacement algorithm

5 3 10

4 Consider the 3 processes, P1, P2 and P3 shown in the table.
Process Arrival time Time Units Required
P1 0 5
P2 1 7
P3 3 4

5 3 10

Paper Name: Operating Systems Paper Code: PCCCS503

36 | P a g e Study Material

What will be the completion order of the 3 processes under the policies FCFS and
RR2 (round robin scheduling with CPU quantum of 2 time units)?

5 Consider a single level paging scheme with a TLB. Assume no page fault occurs.
It takes 20 ns to search the TLB and 100 ns to access the physical memory. If
TLB hit ratio is 80%, the effective memory access time is _______ msec.

4 3 5

6 Consider three CPU-intensive processes, which require 10, 20 and 30 time units
and arrive at times 0, 2 and 6, respectively. How many context switches are
needed if the operating system implements a shortest remaining time first
scheduling algorithm? Do not count the context switches at time zero and at the
end.

4 3 5

7 Consider three processes, all arriving at time zero, with total execution time of 10,
20 and 30 units, respectively. Each process spends the first 20% of execution time
doing I/O, the next 70% of time doing computation, and the last 10% of time
doing I/O again. The operating system uses a shortest remaining compute time
first scheduling algorithm and schedules a new process either when the running
process gets blocked on I/O or when the running process finishes its compute
burst. Assume that all I/O operations can be overlapped as much as possible. For
what percentage of time does the CPU remain idle?

5 3 10

8 Consider the following table of arrival time and burst time for three processes P0,
P1 and P2.
Process Arrival time Burst Time
P0 0 ms 9 ms
P1 1 ms 4 ms
P2 2 ms 9 ms
The pre-emptive shortest job first scheduling algorithm is used. Scheduling is
carried out only at arrival or completion of processes. What is the average waiting
time for the three processes?

4 3 10

9 Assume every process requires 3 seconds of service time in a system with single
processor. If new processes are arriving at the rate of 10 processes per minute,
then estimate the fraction of time CPU is busy in system?

5 5

10 Consider a logical address space of eight pages of 1024 words each, mapped onto
a physical memory of 32 frames.

a. How many bits are there in the logical address?
b. How many bits are there in the physical address?

4 10

Paper Name: Operating Systems Paper Code: PCCCS503

37 | P a g e Study Material

MODULE 4

Disc Scheduling:It is done by operating systems to schedule I/O requests arriving for disk. Disk
scheduling is also known as I/O scheduling.

Disk scheduling is important because:

 Multiple I/O requests may arrive by different processes and only one I/O request can
be served at a time by disk controller. Thus other I/O requests need to wait in waiting
queue and need to be scheduled.

 Two or more request may be far from each other so can result in greater disk arm
movement.

 Hard drives are one of the slowest parts of computer system and thus need to be
accessed in an efficient manner.

Secondary storage devices are those devices whose memory is non volatile, meaning, the
stored data will be intact even if the system is turned off. Here are a few things worth noting
about secondary storage.

 Secondary storage is also called auxiliary storage.

 Secondary storage is less expensive when compared to primary memory like RAMs.

 The speed of the secondary storage is also lesser than that of primary storage.

 Hence, the data which is less frequently accessed is kept in the secondary storage.

 A few examples are magnetic disks, magnetic tapes, removable thumb drives etc.

Magnetic Disk Structure

In modern computers, most of the secondary storage is in the form of magnetic disks. Hence,
knowing the structure of a magnetic disk is necessary to understand how the data in the disk
is accessed by the computer.

Paper Name: Operating Systems Paper Code: PCCCS503

38 | P a g e Study Material

Structure of a magnetic disk

A magnetic disk contains several platters. Each platter is divided into circular shaped tracks.
The length of the tracks near the centre is less than the length of the tracks farther from the
centre. Each track is further divided into sectors, as shown in the figure.

Tracks of the same distance from centre form a cylinder. A read-write head is used to read
data from a sector of the magnetic disk.

The speed of the disk is measured as two parts:

Paper Name: Operating Systems Paper Code: PCCCS503

39 | P a g e Study Material

 Transfer rate: This is the rate at which the data moves from disk to the computer.

 Random access time: It is the sum of the seek time and rotational latency.

Seek time is the time taken by the arm to move to the required track. Rotational latency is
defined as the time taken by the arm to reach the required sector in the track.

Even though the disk is arranged as sectors and tracks physically, the data is logically
arranged and addressed as an array of blocks of fixed size. The size of a block can
be 512 or 1024 bytes. Each logical block is mapped with a sector on the disk, sequentially. In
this way, each sector in the disk will have a logical address.

Disk Scheduling Algorithms

There are several Disk Several Algorithms. We will discuss each one of them.

FCFS (First Come First Serve)

FCFS is the simplest of all Disk Scheduling Algorithms. In FCFS, the requests are addressed
in the order they arrive in the disk queue. Let us understand this with the help of an example.

First Come First Serve

Paper Name: Operating Systems Paper Code: PCCCS503

40 | P a g e Study Material

Example:

Suppose the order of request is- (82,170,43,140,24,16,190)
And current position of Read/Write head is: 50

So, total overhead movement (total distance covered by the disk arm) =

(82-50)+(170-82)+(170-43)+(140-43)+(140-24)+(24-16)+(190-16) =642

Advantages of FCFS

Here are some of the advantages of First Come First Serve.

 Every request gets a fair chance

 No indefinite postponement

Disadvantages of FCFS

Here are some of the disadvantages of First Come First Serve.

 Does not try to optimize seek time

 May not provide the best possible service

SSTF (Shortest Seek Time First)

In SSTF (Shortest Seek Time First), requests having the shortest seek time are executed first.
So, the seek time of every request is calculated in advance in the queue and then they are
scheduled according to their calculated seek time. As a result, the request near the disk arm
will get executed first. SSTF is certainly an improvement over FCFS as it decreases the
average response time and increases the throughput of the system. Let us understand this with
the help of an example.

Example:

Paper Name: Operating Systems Paper Code: PCCCS503

41 | P a g e Study Material

Shortest Seek Time First

Suppose the order of request is- (82,170,43,140,24,16,190)
And current position of Read/Write head is: 50

So,

total overhead movement (total distance covered by the disk arm) =

(50-43)+(43-24)+(24-16)+(82-16)+(140-82)+(170-140)+(190-170) =208

Advantages of Shortest Seek Time First

Here are some of the advantages of Shortest Seek Time First.

 The average Response Time decreases

 Throughput increases

Disadvantages of Shortest Seek Time First

Here are some of the disadvantages of Shortest Seek Time First.

 Overhead to calculate seek time in advance

Paper Name: Operating Systems Paper Code: PCCCS503

42 | P a g e Study Material

 Can cause Starvation for a request if it has a higher seek time as compared to
incoming requests

 The high variance of response time as SSTF favors only some requests

SCAN

In the SCAN algorithm the disk arm moves in a particular direction and services the requests
coming in its path and after reaching the end of the disk, it reverses its direction and again
services the request arriving in its path. So, this algorithm works as an elevator and is hence
also known as an elevator algorithm. As a result, the requests at the midrange are serviced
more and those arriving behind the disk arm will have to wait.

Example:

SCAN Algorithm

Suppose the requests to be addressed are-82,170,43,140,24,16,190. And the Read/Write arm
is at 50, and it is also given that the disk arm should move “towards the larger value”.

Therefore, the total overhead movement (total distance covered by the disk arm) is
calculated as

= (199-50) + (199-16) = 332

Paper Name: Operating Systems Paper Code: PCCCS503

43 | P a g e Study Material

Advantages of SCAN Algorithm

Here are some of the advantages of the SCAN Algorithm.

 High throughput

 Low variance of response time

 Average response time

Disadvantages of SCAN Algorithm

Here are some of the disadvantages of the SCAN Algorithm.

 Long waiting time for requests for locations just visited by disk arm

C-SCAN

In the SCAN algorithm, the disk arm again scans the path that has been scanned, after
reversing its direction. So, it may be possible that too many requests are waiting at the other
end or there may be zero or few requests pending at the scanned area.

These situations are avoided in the CSCAN algorithm in which the disk arm instead of
reversing its direction goes to the other end of the disk and starts servicing the requests from
there. So, the disk arm moves in a circular fashion and this algorithm is also similar to the
SCAN algorithm hence it is known as C-SCAN (Circular SCAN).

Example:

Paper Name: Operating Systems Paper Code: PCCCS503

44 | P a g e Study Material

Circular SCAN

Suppose the requests to be addressed are-82,170,43,140,24,16,190. And the Read/Write arm
is at 50, and it is also given that the disk arm should move “towards the larger value”.

So, the total overhead movement (total distance covered by the disk arm) is calculated as:

=(199-50) + (199-0) + (43-0) = 391

Advantages of C-SCAN Algorithm

Here are some of the advantages of C-SCAN.

 Provides more uniform wait time compared to SCAN.

LOOK

LOOK Algorithm is similar to the SCAN disk scheduling algorithm except for the difference
that the disk arm in spite of going to the end of the disk goes only to the last request to be

Paper Name: Operating Systems Paper Code: PCCCS503

45 | P a g e Study Material

serviced in front of the head and then reverses its direction from there only. Thus it prevents
the extra delay which occurred due to unnecessary traversal to the end of the disk.

Example:

LOOK Algorithm

Suppose the requests to be addressed are-82,170,43,140,24,16,190. And the Read/Write arm
is at 50, and it is also given that the disk arm should move “towards the larger value”.

So, the total overhead movement (total distance covered by the disk arm) is calculated as:

= (190-50) + (190-16) = 314

C-LOOK

As LOOK is similar to the SCAN algorithm, in a similar way, C-LOOK is similar to the
CSCAN disk scheduling algorithm. In CLOOK, the disk arm in spite of going to the end goes
only to the last request to be serviced in front of the head and then from there goes to the
other end’s last request. Thus, it also prevents the extra delay which occurred due to
unnecessary traversal to the end of the disk.

Example:

Paper Name: Operating Systems Paper Code: PCCCS503

46 | P a g e Study Material

1. Suppose the requests to be addressed are-82,170,43,140,24,16,190. And the
Read/Write arm is at 50, and it is also given that the disk arm should move “towards
the larger value”

C-LOOK

So, the total overhead movement (total distance covered by the disk arm) is calculated as

= (190-50) + (190-16) + (43-16) = 341

A computer file is defined as a medium used for saving and managing data in the computer
system. The data stored in the computer system is completely in digital format, although
there can be various types of files that help us to store the data.

What is a File System?
A file system is a method an operating system uses to store, organize, and manage files and
directories on a storage device. Some common types of file systems include:

Paper Name: Operating Systems Paper Code: PCCCS503

47 | P a g e Study Material

1. FAT (File Allocation Table): An older file system used by older versions of Windows
and other operating systems.

2. NTFS (New Technology File System): A modern file system used by Windows. It
supports features such as file and folder permissions, compression, and encryption.

3. ext (Extended File System): A file system commonly used on Linux and Unix-based
operating systems.

4. HFS (Hierarchical File System): A file system used by macOS.
5. APFS (Apple File System): A new file system introduced by Apple for their Macs and

iOS devices.
A file is a collection of related information that is recorded on secondary storage. Or file is
a collection of logically related entities. From the user’s perspective, a file is the smallest
allotment of logical secondary storage.
The name of the file is divided into two parts as shown below:
 name
 extension, separated by a period.
Issues Handled By File System
We’ve seen a variety of data structures where the file could be kept. The file system’s job is
to keep the files organized in the best way possible.
A free space is created on the hard drive whenever a file is deleted from it. To reallocate
them to other files, many of these spaces may need to be recovered. Choosing where to
store the files on the hard disc is the main issue with files one block may or may not be
used to store a file. It may be kept in the disk’s non-contiguous blocks. We must keep track
of all the blocks where the files are partially located.
Files Attributes And Their Operations

Attributes Types Operations

Name Doc Create

Type Exe Open

Size Jpg Read

Creation Data Xis Write

Author C Append

Paper Name: Operating Systems Paper Code: PCCCS503

48 | P a g e Study Material

Attributes Types Operations

Last Modified Java Truncate

protection class Delete

 Close

File type Usual extension Function

Executable exe, com, bin
Read to run machine
language program

Object obj, o
Compiled, machine
language not linked

Source Code C, java, pas, asm, a
Source code in various
languages

Batch bat, sh
Commands to the
command interpreter

Text txt, doc Textual data, documents

Word Processor wp, tex, rrf, doc
Various word processor
formats

Archive arc, zip, tar
Related files grouped into
one compressed file

Multimedia mpeg, mov, rm For containing audio/video

Paper Name: Operating Systems Paper Code: PCCCS503

49 | P a g e Study Material

File type Usual extension Function

information

Markup xml, html, tex
It is the textual data and
documents

Library lib, a ,so, dll
It contains libraries of
routines for programmers

Print or View gif, pdf, jpg
It is a format for printing
or viewing an ASCII or
binary file.

File Directories
The collection of files is a file directory. The directory contains information about the files,
including attributes, location, and ownership. Much of this information, especially that is
concerned with storage, is managed by the operating system. The directory is itself a file,
accessible by various file management routines.
Below are information contained in a device directory.
 Name
 Type
 Address
 Current length
 Maximum length
 Date last accessed
 Date last updated
 Owner id
 Protection information
The operation performed on the directory are:
 Search for a file
 Create a file
 Delete a file
 List a directory
 Rename a file
 Traverse the file system

Paper Name: Operating Systems Paper Code: PCCCS503

50 | P a g e Study Material

Advantages of Maintaining Directories
 Efficiency: A file can be located more quickly.
 Naming: It becomes convenient for users as two users can have same name for

different files or may have different name for same file.
 Grouping: Logical grouping of files can be done by properties e.g. all java programs,

all games etc.
Single-Level Directory
In this, a single directory is maintained for all the users.
 Naming problem: Users cannot have the same name for two files.
 Grouping problem: Users cannot group files according to their needs.

Two-Level Directory
In this separate directories for each user is maintained.
 Path name: Due to two levels there is a path name for every file to locate that file.
 Now, we can have the same file name for different users.
 Searching is efficient in this method.

Paper Name: Operating Systems Paper Code: PCCCS503

51 | P a g e Study Material

Tree-Structured Directory
The directory is maintained in the form of a tree. Searching is efficient and also there is
grouping capability. We have absolute or relative path name for a file.

Paper Name: Operating Systems Paper Code: PCCCS503

52 | P a g e Study Material

File Allocation Methods
There are several types of file allocation methods. These are mentioned below.
 Continuous Allocation
 Linked Allocation(Non-contiguous allocation)
 Indexed Allocation
Continuous Allocation
A single continuous set of blocks is allocated to a file at the time of file creation. Thus, this
is a pre-allocation strategy, using variable size portions. The file allocation table needs just
a single entry for each file, showing the starting block and the length of the file. This
method is best from the point of view of the individual sequential file. Multiple blocks can
be read in at a time to improve I/O performance for sequential processing. It is also easy to
retrieve a single block. For example, if a file starts at block b, and the ith block of the file is
wanted, its location on secondary storage is simply b+i-1.

Paper Name: Operating Systems Paper Code: PCCCS503

53 | P a g e Study Material

Disadvantages of Continuous Allocation
 External fragmentation will occur, making it difficult to find contiguous blocks of space

of sufficient length. A compaction algorithm will be necessary to free up additional
space on the disk.

 Also, with pre-allocation, it is necessary to declare the size of the file at the time of
creation.

Linked Allocation(Non-Contiguous Allocation)
Allocation is on an individual block basis. Each block contains a pointer to the next block
in the chain. Again the file table needs just a single entry for each file, showing the starting
block and the length of the file. Although pre-allocation is possible, it is more common
simply to allocate blocks as needed. Any free block can be added to the chain. The blocks
need not be continuous. An increase in file size is always possible if a free disk block is
available. There is no external fragmentation because only one block at a time is needed but
there can be internal fragmentation but it exists only in the last disk block of the file.
Disadvantage Linked Allocation(Non-contiguous allocation)

Paper Name: Operating Systems Paper Code: PCCCS503

54 | P a g e Study Material

 Internal fragmentation exists in the last disk block of the file.
 There is an overhead of maintaining the pointer in every disk block.
 If the pointer of any disk block is lost, the file will be truncated.
 It supports only the sequential access of files.
Indexed Allocation
It addresses many of the problems of contiguous and chained allocation. In this case, the
file allocation table contains a separate one-level index for each file: The index has one
entry for each block allocated to the file. The allocation may be on the basis of fixed-size
blocks or variable-sized blocks. Allocation by blocks eliminates external fragmentation,
whereas allocation by variable-size blocks improves locality. This allocation technique
supports both sequential and direct access to the file and thus is the most popular form of
file allocation.

Disk Free Space Management
Just as the space that is allocated to files must be managed, so the space that is not currently
allocated to any file must be managed. To perform any of the file allocation techniques, it is
necessary to know what blocks on the disk are available. Thus we need a disk allocation

Paper Name: Operating Systems Paper Code: PCCCS503

55 | P a g e Study Material

table in addition to a file allocation table. The following are the approaches used for free
space management.
1. Bit Tables: This method uses a vector containing one bit for each block on the disk.

Each entry for a 0 corresponds to a free block and each 1 corresponds to a block in use.
For example 00011010111100110001
In this vector every bit corresponds to a particular block and 0 implies that that
particular block is free and 1 implies that the block is already occupied. A bit table has
the advantage that it is relatively easy to find one or a contiguous group of free blocks.
Thus, a bit table works well with any of the file allocation methods. Another advantage
is that it is as small as possible.

2. Free Block List: In this method, each block is assigned a number sequentially and the
list of the numbers of all free blocks is maintained in a reserved block of the disk.

Advantages of File System
 Organization: A file system allows files to be organized into directories and

subdirectories, making it easier to manage and locate files.
 Data protection: File systems often include features such as file and folder

permissions, backup and restore, and error detection and correction, to protect data from
loss or corruption.

 Improved performance: A well-designed file system can improve the performance of
reading and writing data by organizing it efficiently on disk.

Paper Name: Operating Systems Paper Code: PCCCS503

56 | P a g e Study Material

Disadvantages of File System
 Compatibility issues: Different file systems may not be compatible with each other,

making it difficult to transfer data between different operating systems.
 Disk space overhead: File systems may use some disk space to store metadata and

other overhead information, reducing the amount of space available for user data.
 Vulnerability: File systems can be vulnerable to data corruption, malware, and other

security threats, which can compromise the stability and security of the system.

Q.No. Question Blooms
Level

CO Marks

1 Suppose a disk has 201 cylinders, numbered from 0 to 200. At some time the disk
arm is at cylinder 100, and there is a queue of disk access requests for cylinders
30, 85, 90, 100, 105, 110, 135 and 145. If Shortest-Seek Time First (SSTF) is
being used for scheduling the disk access, the request for cylinder 90 is serviced
after servicing which number of requests?

5 4 10

2 Consider an imaginary disk with 51 cylinders. A request comes in to read a block
on cylinder 11. While the seek to cylinder 11 is in progress, new requests come in
for cylinders 1, 36, 16, 34, 9 and 12 in that order. Starting from the current head
position, what is the total distance (in cylinders) that the disk arm moves, to satify
all the pending requests, for each of the following disk scheduling algorithms:
FCFS, SSTF, SCAN & LOOK?

5 4 10

3 Suppose the following disk request sequence (track numbers) for a disk with 100
tracks is given: 45, 20, 90, 10, 50, 60, 80, 25, 70. Assume that the initial position
of the R/W head is on track 50. What will be the additional distance (in terms of
number of tracks) that will be traversed by the R/W head when the Shortest Seek
Time First (SSTF) algorithm is used compared to the SCAN (Elevator) algorithm
(assuming that SCAN algorithm moves towards 100 when it starts execution)

5 4 10

4 Evaluate the efficiency and effectiveness of different file organization methods
(e.g., sequential, indexed, hashed) in managing large volumes of data.

5 4 10

5 Synthesize a comprehensive file management strategy for a multinational
corporation with geographically dispersed offices, considering factors such as
security, accessibility, and scalability.

6 4 10

6 Assess the trade-offs between different disk scheduling algorithms
(e.g., FCFS, SSTF, SCAN, C-SCAN, LOOK, C-LOOK) in terms
of throughput, response time, and fairness, and recommend the
most suitable algorithm for specific system configurations.

5 4 10

1. Three processes arrive at time zero with CPU bursts of 16, 20 and 10 milliseconds. If

the scheduler has prior knowledge about the length of the CPU bursts, what will be

the minimum achievable average waiting time for these three processes in a non-

preemptive scheduler (rounded to nearest integer)?

2. An operating system needs to manage a set of tasks with mixed priority levels. There

are three types of tasks:

a. High-priority real-time tasks that need immediate execution (e.g., hardware

interrupts).

b. Medium-priority CPU-bound tasks that are computationally intensive but not

urgent (e.g., data analysis).

c. Low-priority I/O-bound tasks that spend most of their time waiting for I/O

operations (e.g., file transfers).

Process Priority Burst Time (ms) Arrival Time (ms)

P1 High 15 0

P2 Low 20 5

P3 Medium 25 10

P4 High 5 12

P5 Low 30 20

Apply the priority-based preemptive scheduling algorithm to these tasks and determine

the execution order. Calculate the average waiting time and turnaround time for the system.

3. Process Id Arrival time Burst time Priority

P1 0 8 3

P2 1 4 3

P3 2 5 4

P4 3 3 4

P5 4 1 5

 If the CPU scheduling policy is priority preemptive, calculate the average waiting time

and average turn around time. (Higher number represents higher priority)

4. If the CPU scheduling policy is SJF preemptive, in the following system, calculate the

average waiting time and average turn around time.

Process Id Arrival time Burst time

P1 1 3

P2 2 5

P3 4 2

P4 0 4

P5 2 2

5. Consider the following table of arrival time and burst time for four processes P1, P2,

P3 and P4.

Process Id Arrival time Burst time

P1 1 2

P2 2 4

P3 3 6

P4 4 8

Calculate the average waiting time and average turn around time, if the system follows

preemptive Longest Remaining Time First CPU scheduling algorithm.

6. A multilevel queue scheduling system is used in an OS with three different queues:

1. System Queue: Highest priority, time quantum of 10ms.

2. Interactive Queue: Medium priority, time quantum of 20ms.

3. Background Queue: Lowest priority, no specific time quantum (First-Come, First-

Served).

 The operating system needs to manage the following tasks:

Process Queue Type Burst Time (ms) Arrival Time (ms)

P1 System 25 0

P2 Interactive 40 5

P3 Background 50 10

P4 System 10 15

P5 Interactive 20 20

Simulate the execution of these tasks using a multilevel queue scheduling algorithm with

the given time quantum for each queue. Provide a Gantt chart of the execution process, and

calculate the total CPU idle time.

1. Consider a system with the following processes and resources:

 Processes: P1, P2, P3

 Resources: R1 (2 instances), R2 (1 instance), R3 (1 instance)

The current resource allocation status is as follows:

 P1 is holding 1 instance of R1 and requesting 1 instance of R2.

 P2 is holding 1 instance of R2 and requesting 1 instance of R3.

 P3 is holding 1 instance of R3 and requesting 1 instance of R1.

Draw the Resource Allocation Graph (RAG) for this system. Based on the graph,

determine if there is a deadlock. If deadlock exists, identify the processes involved.

2. A system with three processes (P1, P2, P3) and three resources (R1, R2, R3) is in a

potential deadlock situation. The current resource allocation and request state is as

follows:

 P1 holds R1 and requests R2.

 P2 holds R2 and requests R3.

 P3 holds R3 and requests R1.

(a) Draw the current Resource Allocation Graph (RAG) for this system.

(b) Modify the graph by introducing one possible change to the allocation or request

of resources such that the system avoids deadlock. Explain your reasoning behind the

modification.

3. A system consists of four processes (P1, P2, P3, P4) and three resources (R1, R2, R3),

each having only one instance. The following allocation and request table is given:

Process Currently Held Resources Requested Resources

P1 R1 R2

P2 R2 R3

P3 None R3

P4 R3 R1

 The system has detected a deadlock involving some or all of these processes.

 (a) Analyze the system's state by identifying which processes are in a deadlock.

 (b) Propose a suitable deadlock recovery strategy (e.g., process termination or

resource preemption).

4. A system has detected a deadlock involving three processes (P1, P2, P3) and two

resources (R1, R2). The following information is available:

 P1 holds R1 and is requesting R2.

 P2 holds R2 and is requesting R1.

 P3 is waiting for either R1 or R2 to be released.

The system administrator needs to terminate one process to resolve the deadlock.

(a) Analyze which process should be terminated to resolve the deadlock. Consider the

resources each process holds and requests.

(b) Explain the reasoning behind your decision.

5. Consider a system with five processes (P1, P2, P3, P4, P5) and three resource types

(R1, R2, R3). The following tables show the allocation, maximum, and available

resources:

Process Allocation (R1, R2, R3) Maximum (R1, R2, R3)

P1 1, 0, 0 3, 2, 2

P2 2, 1, 1 5, 3, 2

P3 3, 1, 1 4, 2, 2

P4 0, 2, 1 3, 3, 2

P5 1, 1, 1 4, 3, 3

Available resources: R1 = 1, R2 = 1, R3 = 2

 Apply the Banker’s Algorithm to determine whether the system is in a safe state.

6. Define deadlock in the context of operating systems. Describe the four necessary

conditions for a deadlock to occur, and explain how deadlock detection differs from

deadlock prevention.

1. Consider a system with 1000 KB of total memory. The following processes arrive and

request memory in the given order:

Process Memory Requested (KB)

P1 200

P2 350

P3 100

P4 400

The system uses the first-fit allocation algorithm.

(a) Apply the first-fit algorithm to allocate memory for the processes.

(b) Calculate how much memory is left after all processes have been allocated, and

identify any fragmentation.

2. A system has the following memory partitions available:

Partition Size (KB)

P1 300

P2 500

P3 200

P4 600

 Four processes arrive, each requesting memory:

Process Memory Requested (KB)

P1 350

P2 200

P3 400

P4 100

(a) Use the best-fit algorithm to allocate memory to the processes.

(b) After all processes are allocated, calculate the amount of external fragmentation.

How does the best-fit algorithm affect fragmentation compared to other allocation

strategies?

3. Consider a system that uses paging for memory management. The page size is 4 KB.

A process has the following logical address:

 Logical address: 15,342

 The system has the following page table:

Page Number Frame Number

0 3

1 7

2 1

3 4

(a) Calculate the page number and offset from the given logical address.

(b) Use the page table to determine the corresponding physical address.

4. In a system using segmentation, the segment table for a process is as follows:

Segment Number Base Address Limit

0 1000 500

1 4000 1000

2 7000 200

 The process generates the following logical address for a memory access:

 Segment Number = 1, Offset = 600

 Translate the given logical address into a physical address using the segment table.

5. A process has been assigned a relocation register value of 5000 and a limit register

value of 3000. The process attempts to access the following logical addresses:

1. Logical address 1500

2. Logical address 3200

(a) For each logical address, determine the physical address by applying the

relocation register.

(b) Check if each access is valid by comparing the logical address with the limit

register. If the access is invalid, explain why.

6. Explain the function of a Translation Lookaside Buffer (TLB) in a paging system.

How does it improve the performance of address translation? Discuss the implications

of TLB size on hit rate and overall system performance.

1. A company is considering different RAID (Redundant Array of Independent Disks)

levels for their data storage system, particularly RAID 0, RAID 1, RAID 5, and RAID

6.

Compare the performance, data redundancy, and fault tolerance of each RAID level.

Provide specific advantages and disadvantages for each configuration in the context

of high availability and data recovery.

2. In a disk management system, fragmentation can lead to inefficient storage utilization

and performance degradation.

(a) Analyze the causes of fragmentation (both internal and external) in disk

management systems.

(b) Evaluate the impact of fragmentation on disk performance and suggest strategies

to minimize fragmentation, including defragmentation techniques.

3. A hard disk drive has 4 platters, with each platter containing 1000 tracks. Each track

has 50 sectors, and each sector can store 512 bytes of data.

(a) Calculate the total storage capacity of the disk.

(b) If a file requires 2048 bytes of storage, how many sectors and tracks will it occupy?

4. Describe the physical structure of a hard disk drive (HDD). Include details on

components such as platters, tracks, sectors, and read/write heads. How do these

components work together to store and retrieve data?

1. Explain the concept of demand paging in virtual memory systems. How does it differ

from pre-paging? Discuss the benefits and drawbacks of demand paging in terms of

memory utilization and system performance.

2. Define thrashing in the context of virtual memory management. Describe the

conditions under which thrashing occurs and its impact on system performance.

(a) Provide a scenario illustrating thrashing with specific reference to page fault rates.

(b) Discuss strategies that can be implemented to reduce thrashing in a system.

3. Compare and contrast two common page replacement algorithms: Least Recently

Used (LRU), and Optimal Page Replacement.

Consider a reference string of page requests: [1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5] with 3

page frames. Calculate the number of page faults for each algorithm.

4. Discuss how the size of page frames affects the performance of a virtual memory

system.

Analyze the trade-offs involved in choosing larger versus smaller page sizes,

particularly regarding page fault rates and internal fragmentation.

